Studia Geophysica et Geodaetica

, Volume 54, Issue 3, pp 347–366 | Cite as

Ability of the EGM2008 high degree geopotential model to calculate a local geoid model in Valencia, Eastern Spain

  • Angel MartinEmail author
  • Ana Belén Anquela
  • Jorge Padín
  • José Luís Berné


A new generation of global geopotential models (GGM) is being developed. These solutions offer a file with fully-normalized spherical harmonic coefficients of the Earth’s gravitational potential up to a degree greater than 2000 with very low commission errors. This paper analyses the recent Earth Gravitational Model EGM2008, developed up to degree and order 2159 with additional coefficients to degree 2190 and order 2159, which means recovering the gravitational field up to approximately 20 km wavelengths. 223 GPS/levelling points of the new Spanish High Precision Levelling Network in the Valencia region (Eastern Spain) are used as external tool for evaluation in that particular region. The same evaluation has been performed to other different global (EGM96 and EIGENCG03C), continental (EGG97), regional (IGG2005 and IBERGEO2006) and local (GCV07) geoid models for comparison purposes only. These comparisons show that EGM2008 is the geoid model that best fits to the GPS/levelling data in that region.

Based on these results, EGM2008 GGM is used to determine a new local geoid model in the region of Valencia by means of the remove-restore technique in the scenario proposed by least-squares collocation, in order to check the ability of the EGM2008, as a very high-degree GGM, to calculate a local geoid model in the studied area. The determination is presented step by step in this article, comparing the results of each step with those obtained using the same process but with the global model EIGEN-CG03C, complete up to degree and order 360, that is, a high-degree GGM. These two new geoid models have been analyzed using the 223 GPS/levelling points. The results show that local geoid determination based on EGM2008model gives significantly better fit to GPS/levelling points than any other geoid model in the studied area. However the improvement is not significant with respect to the direct use of EGM2008 without any additional local gravity data. Hence we strongly recommend the use of EGM2008 without applying least-squares collocation in the areas where good ground data were available for the computation of EGM2008.


geopotential theory global geopotential model EGM2008 local geoid determination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amos M.J. and Featherstone W.E., 2003. Comparisons of recent global geopotential models with terrestrial gravity field data over New Zealand and Australia. Geomatic Research Australasia, 79, 1–20.Google Scholar
  2. Barbadillo A. and De La Cruz, F., 2006. Nueva Red Española de Nivelación de Alta Precisión. Proyecto REDNAP. V Asamblea Hispano-Portuguesa de Geodesia y Geofísica, Sevilla, Spain. ISBN: 84-8320-373-1 (CD, in Spanish).Google Scholar
  3. Corchete V., Chourak M. and Khattach D., 2005. The high-resolution gravimetric geoid of Iberia: IGG2005. Geophys. J. Int., 162, 676–684.CrossRefGoogle Scholar
  4. Denker H. and Torge W., 1998. The European Gravimetric Quasigeoid EGG97. In: Forsberg R., Feissel M. and Dietrich R. (Eds.), Geodesy in the Move. International Association of Geodesy Symposia, 119, 249–254, Springer-Verlag, Berlin-Heidelberg, New York.Google Scholar
  5. Drinkwater M.R., Haagmans R., Muzi D., Popescu A., Floberhagen R., Kern M. and Fehringer M., 2007. The GOCE gravity mission: ESA’s first core Earth explorer. In: Fletcher K. (Ed.), Proceedings of the 3rd International GOCE User Workshop, Frascati, Rome, Italy. ESA Special Publication SP-627, ISBN 92-9092-938-3, European Space Agency, Noordwijk, The Netherlands.Google Scholar
  6. Forsberg R. and Tscherning C.C., 1981. The use of height data in gravity field approximation by collocation. J. Geophys. Res., 86(B9), 7843–7854.CrossRefGoogle Scholar
  7. Förste C., Flechtner F., Schmidt R., Meyer U., Stubenvoll R., Barthelmes F., Rothacher M., Biancale R., Bruinsma S. and Lemoine J.M., 2005. A new high resolution global gravity field model from the combination of GRACE satellite mission and altimetry/gravimetry surface gravity data. Geophys. Res. Abstracts, 7, 04561.Google Scholar
  8. Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman, San Francisco.Google Scholar
  9. Kenyon S., Factor J., Pavlis N. and Holmes S., 2007. Towards the next Earth Gravitational Model. SEG Expanded Abstracts, 26, 733, doi: 10.1190/1.2792518.CrossRefGoogle Scholar
  10. Kiamehr R. and Sjöberg L.E., 2005. Comparison of the qualities of recent global and local gravimetric geoid models in Iran. Stud. Geophys. Geod., 49, 289–304.CrossRefGoogle Scholar
  11. Knudsen P., 1985. Estimation and modelling of the local empirical covariance function using gravity and satellite altimeter data. Bulletin Géodésique, 61, 145–160.CrossRefGoogle Scholar
  12. Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olson T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Technical Report NASA/TP-1996/8-206861, NASA, Greenbelt, Maryland, USA.Google Scholar
  13. Martín A., Anquela A.B., Padin J. and Berné J.L., 2005. Análisis y perspectivas sobre la determinación del campo gravitatorio terrestre a partir de las misiones por satélite CHAMP, GRACE y GOCE. Mapping, 105, 40–51, ISSN: 1131-9100 (in Spanish).Google Scholar
  14. Martín A., Capilla R., Anquela A.B., Padín J. and Berné J.L., 2009. Cálculo y análisis del nuevo modelo de geoide gravimétrico de la Comunidad Valenciana. Topografía y Cartografía, 26(151), 2–14, ISSN: 0212-9280 (in Spanish).Google Scholar
  15. Mayer-Gürr T., 2007. ITG-GRACE03S: The latest GRACE gravity field solution computed in Bonn. Joint International GSTM and DFG SPP Symposium, 15–17 October 2007, Potsdam, Germany (online at
  16. Moritz H., 1980. Advanced Physical Geodesy. Wichmann, Abacus Press, Karlsruhe, Germany.Google Scholar
  17. Novák P., Kostelecký J. and Klokočník J., 2009. Testing global geopotential models through comparison of a local quasi-geoid model with GPS/leveling data. Stud. Geophys. Geod., 53, 39–60.CrossRefGoogle Scholar
  18. Omang O.C.D., Frosberg R. and Strykowski G., 2005. Comparison of new geoid model and EIGEN-2S in the North Atlantic region. In: Sansò F. (Ed.), A Window on the Future of Geodesy. International Association of Geodesy Symposia, 128, 306–309, Springer-Verlag, Berlin. ISBN: 978-3-540-24055-6CrossRefGoogle Scholar
  19. Pavlis, N.K., Saleh, J., 2005. Error propagation with geographic specificity for very high degree geopotential models. In: Jekeli C., Bastos L.M.C. and Fernandes J. (EdS.), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129, 149–154, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  20. Pavlis N.K., Holmes S.A., Kenyon S.C., Schmidt D. and Trimmer R., 2005. A preliminary gravitational model to degree 2160. In: In: Jekeli C., Bastos L.M.C. and Fernandes J. (EdS.), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129, 18–23, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  21. Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. Geophysical Research Abstracts, 10, 2-2-2008. Full version released by National Geospatial-Intelligence Agency, Bethesda, MD, (
  22. Rapp R.H., 1995. Separation between reference surfaces of selected vertical datums. Bulletin Géodésique, 69, 26–31.CrossRefGoogle Scholar
  23. Rapp R.H., 1997. Global models for the 1 cm geoid: present status and near term prospects. In: Sansò F. and Rummel R. (Eds.), Geodetic Boundary Value problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, 65, Springer-Verlag, Berlin, 273–311.CrossRefGoogle Scholar
  24. Rodríguez-Caderot G., Lacy M.C., Gil A.J. and Blázquez B., 2006. Comparing recent geopotential models in Andalusia (Southern Spain). Stud. Geophys. Geod., 50, 619–631.CrossRefGoogle Scholar
  25. Sevilla M.J., 2006. INTERGEO 2006: Nuevo geoide centimétrico de la península Ibérica. Topografía y Cartografía, 23(135), 3–11, ISBN: 0212-9280 (in Spanish).Google Scholar
  26. Tscherning C.C. and Rapp R.H., 1974. Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models. Report No. 208, Department of Geodetic Science, The Ohio State University, Columbus.Google Scholar
  27. Tscherning C.C., 1985. Local approximation of the gravity potential by least squares collocation. In: Schwarz K.P. (Ed.), Proceedings of the International Summer School on Local Gravity Field Approximation. Publ. 60003, The University of Calgary, Calgary, Alberta, Canada, 277–362.Google Scholar
  28. Tscherning C.C., 1991. A strategy for gross-error detection in satellite altimeter data applied in the Baltic-sea area for enhanced geoid and gravity determination. In: Rapp R.H. and Sansó F. (Eds.), Determination of the Geoid. Present and Future. International Association of Geodesy Symposia, 106, Springer-Verlag, Berlin, Heidelberg, New York, 95–107.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2010

Authors and Affiliations

  • Angel Martin
    • 1
    Email author
  • Ana Belén Anquela
    • 1
  • Jorge Padín
    • 1
  • José Luís Berné
    • 1
  1. 1.Department of Cartographic Engineering, Geodesy and PhotogrammetryPolytechnic University of ValenciaValenciaSpain

Personalised recommendations