Advertisement

Studia Geophysica et Geodaetica

, Volume 54, Issue 2, pp 195–218 | Cite as

On the combination of global and local data in collocation theory

  • Roland PailEmail author
  • Mirko Reguzzoni
  • Fernando Sansó
  • Norbert Kühtreiber
Article

Abstract

Due to the successful operation of dedicated satellite gravity missions, nowadays high-accuracy global gravity field models have become available. This triggers the challenge to optimally combine this long to medium wavelength gravity field information derived from space-borne data with high-resolution terrestrial gravity data. In this paper, the least squares collocation concept is revised with the attempt to consistently unify the combination procedure in such a way that the full information contained in both data sets is merged. For example, in local or regional geoid determination the remove-restore method is usually applied only partially taking into account the accuracy of the global model coefficients used for the long-wavelength reduction. The key advantage of the extended formulation is the fact that it automatically accounts for the error covariance of all data types involved. The applicability, feasibility and performance of the proposed method is investigated in the frame of numerical closed-loop simulations. The two main fields of application, i.e., the improvement of a global gravity field model by terrestrial gravity field data, and, vice versa, the support to a regional geoid solution by the incorporation of a global gravity field model, have been analyzed and assessed. Although applied under simplified conditions, it could be shown that the method works and is practically applicable.

Keywords

least squares collocation global gravity field models gravity anomaly data combination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertella A., Sansó F. and Sneeuw N., 1999. Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere. J. Geodesy, 73, 436–447.CrossRefGoogle Scholar
  2. Bouman J., 2000. Quality assessment of satellite-based global gravity fields models. Publications on Geodesy, 48, Netherlands Geodetic Commission, Delft, The Netherlands.Google Scholar
  3. Catastini G., Cesare S., De Sanctis S., Dumontel M., Parisch M. and Sechi G., 2007. Predictions of the GOCE in-flight performances with the end-to-end system simulator. In: Fletcher K. (Ed), The 3rd International GOCE User Workshop, ESA SP-627, ESA Publications Division, Noordwijk, The Netherlands, ISBN 92-9092-938-3, 9–16.Google Scholar
  4. Colombo O.L., 1981. Numerical Methods for Harmonic Analysis on the Sphere. Report No. 310, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar
  5. Ditmar P., Kusche J. and Klees R., 2003. Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: Regularization issues. J. Geodesy, 77, 465–477.CrossRefGoogle Scholar
  6. ESA, 1999. Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1). Report for Mission Selection of the Four Candidate Earth Explorer Missions, ESA Publications Division, ESA, Noordwijk, ISBN 9290925280.Google Scholar
  7. Förste C., Flechtner F., Schmidt R., König R., Meyer U., Stubenvoll R., Rothacher M., Barthelmes F., Neumayer H., Biancale R., Bruinsma S., Lemoine J.-M. and Loyer S., 2007. Global mean gravity field models from combination of satellite mission and altimetry/gravimetry surface data. In: Fletcher K. (Ed), The 3rd International GOCE User Workshop, ESA SP-627, ESA Publications Division, Noordwijk, The Netherlands, ISBN 92-9092-938-3, 163–168.Google Scholar
  8. Förste C., Flechtner F., Schmidt R., Stubenvoll R., Rothacher M., Kusche J., Neumayer K.H., Biancale R., Lemoine J.-M., Barthelmes F., Bruinsma S., König R. and Meyer U., 2008. EIGEN-GL05C — A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophysical Research Abstracts, 10, EGU2008-A-03426 (http://edoc.gfz-potsdam.de/gfz/get/11298/0/8018bf0a94cc72f1708dab50f8f88d37 /foerste_EGU2008-A-03426.pdf).
  9. Gruber T., 2001. High resolution gravity field modeling with full variance-covariance matrices. J. Geodesy, 75, 505–514.CrossRefGoogle Scholar
  10. JPL, 1998. GRACE: Gravity Recovery and Climate Experiment: Science and Mission Requirements Document. Revision A. JPLD-15928, NASA’s Earth System Science Pathfinder Program, Jet Propulsion Laboratory, Pasadena, CA.Google Scholar
  11. Kaula W.M., 1966. Theory of Satellite Geodesy: Applications of Satellites to Geodesy. Dover Publications, Mineola, New York.Google Scholar
  12. Knudsen P., 1987. Estimation and modelling of the local empirical covariance function using gravity and satellite altimeter data. Bulletin Géodésique, 61, 145–160.CrossRefGoogle Scholar
  13. Krarup T., 1969. A Contribution to the Mathematical Foundation of Physical Geodesy. Geodætisk Instituts, Meddelelse, 44, Copenhagen, Denmark.Google Scholar
  14. Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olson T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Technical Report TP-1998-206861, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, USA.Google Scholar
  15. Maggi A., Migliaccio F., Reguzzoni M. and Tselfes N., 2007. Combination of ground gravimetry and GOCE data for local geoid determination: a simulation study. Proceedings of the 1st International Symposium of IGFS. Harita Dergisi, Special Issue 18. General Command of Mapping, Ankara, Turkey, 1–6, ISSN: 1300-5790.Google Scholar
  16. Metzler B. and Pail R., 2005. GOCE data processing: the spherical cap regularization approach. Stud. Geophys. Geod., 49, 441–462.CrossRefGoogle Scholar
  17. Moritz H., 1972. Advanced Least-Squares Methods. Report No. 175, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar
  18. Moritz H., 1978. Least-squares collocation. Rev. Geophys. Space Phys., 16, 421–430.CrossRefGoogle Scholar
  19. Moritz H., 1989. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe, Germany.Google Scholar
  20. Pail R., Plank G. and Schuh W.-D., 2001. Spatially restricted data distributions on the sphere: the method of orthonormalized functions and applications. J. Geodesy, 75, 44–56.CrossRefGoogle Scholar
  21. Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. Geophysical Research Abstracts, 10, 2-2-2008. Full version released by National Geospatial-Intelligence Agency, Bethesda, MD, (http://www.dgfi.badw.de/typo3_mt/fileadmin/2kolloquium_muc/2008-10-08/Bosch/EGM2008.pdf).
  22. Pertusini L., Reguzzoni M. and Sansó F., 2010. Analysis of the covariance structure of the GOCE space-wise solution with possible applications. In: Mertikas S.P. (Ed.), Gravity, Geoid and Earth Observation: IAG Commission 2: Gravity Field, Chania, Crete, Greece, 23–27 June 2008. International Association of Geodesy Symposia, 135, Springer-Verlag, Berlin and Heidelberg, ISBN: 978-3642106330.CrossRefGoogle Scholar
  23. Rapp R.H., 1989. Combination of satellite, altimetric, and terrestrial gravity data. In: Bhattacharji S., Friedman G.M., Neugebauer H.J. and Seilacher A. (Eds.), Theory of Satellite Geodesy and Gravity Field Determination. Lecture Notes in Earth Sciences, 25, Springer-Verlag, Berlin and Heidelber, 261–284, ISBN: 978-3540515289.CrossRefGoogle Scholar
  24. Rapp R.H. and Pavlis N.K., 1990. The development and analysis of geopotential coefficient models to spherical harmonic degree 360. J. Geophys. Res., 95(B13), 21885–21911.CrossRefGoogle Scholar
  25. Reigber Ch., Schwintzer P. and Lühr H., 1999. CHAMP geopotential mission. Bollettino di Geofisica Teorica e Applicata, 40, 285–289.Google Scholar
  26. Rummel R., Gruber T. and Koop R., 2004. High level processing facility for GOCE: Products and processing strategy. In: Lacoste H. (Ed.), Proceedings of the Second International GOCE User Workshop, The Geoid and Oceanography. ESA SP-569, ESA Publications Division, Noordwijk, The Netherlands, ISBN: 92-9092-880-8.Google Scholar
  27. Sacerdote F. and Sansó F., 2010. Least squares, Galerkin and boundary value problems. In: Mertikas S.P. (Ed.), Gravity, Geoid and Earth Observation: IAG Commission 2: Gravity Field, Chania, Crete, Greece, 23–27 June 2008. International Association of Geodesy Symposia, 135, Springer-Verlag, Berlin and Heidelberg, ISBN: 978-3642106330.Google Scholar
  28. Schwartz T., 1979. Geodetic improperly posed problems and their regularization. Bollettino di Geodesia e Scienze Affini, 38, 389–416.Google Scholar
  29. Sneeuw N. and van Gelderen M., 1997. The polar gap. In: Sansó F. and Rummel R. (Eds.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, 65, Springer-Verlag, Berlin and Heidelberg, 559–568, ISBN: 978-3540626367.CrossRefGoogle Scholar
  30. Tikhonov A.N. and Arsenin V.Y., 1977. Solutions of Ill-Posed Problems. JohnWilney and Sons, New York.Google Scholar
  31. Tscherning C.C., 1974. A FORTRAN IV Program for the Determination of the Anomalous Potential Using Stepwise Least Squares Collocation. Report No. 212, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar
  32. Tscherning C.C., 2001. Covering the GOCE mission polar gaps using gradients and ground gravity. Proceedings of the International GOCE User Workshop. ESTEC ESA WPP-188, Noordwijk, The Netherlands, 105–110.Google Scholar
  33. Tscherning C.C. and Rapp R., 1974. Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models. Report No. 208, Department of Geodetic Science, The Ohio State University, Columbus, Ohio.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2010

Authors and Affiliations

  • Roland Pail
    • 1
    Email author
  • Mirko Reguzzoni
    • 2
  • Fernando Sansó
    • 2
  • Norbert Kühtreiber
    • 3
  1. 1.Institute of Astronomical and Physical GeodesyTechnical University MunichMünchenGermany
  2. 2.Politecnico di MilanoPolo Regionale di ComoComoItaly
  3. 3.Institute of Navigation and Satellite GeodesyGraz University of TechnologyGrazAustria

Personalised recommendations