Strongly magnetic soil developed on a non-magnetic rock basement: A case study from NW Bulgaria

  • Hana Grison
  • Eduard Petrovský
  • Neli Jordanova
  • Aleš Kapička


The enhanced magnetic susceptibility of modern soils is assumed to have several reasons including, e.g., weathering of an iron-rich geological basement, natural fires, bacterial processes and atmospheric deposition of anthropogenic particles. We report on a case where none of the above sources of magnetic enhancement is evident: a modern soil with high magnetic susceptibility over the whole soil profile, developed on nonmagnetic limestones, in an area with no industrial activities. The surface magnetic susceptibility varies from 60 to 110×10−5 SI, while that of the rock basement is nearly zero. Moreover, significant frequency-dependent magnetic susceptibility (> 12%) suggests that superparamagnetic secondary magnetite/maghemite plays an important role. Possible mechanisms, responsible for this magnetic enhancement, are discussed.


magnetic susceptibility magnetite soil pollution climate limestone Fe-ooids 


  1. Bharde A.A., Parikh R.Y., Baidakova M., Jouen, S., Hannoyer B., Enoki T., Prasad B.L.V., Shouche Y.S., Ogale S. and Sastry M., 2008. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir, 24, 5787–5794.CrossRefGoogle Scholar
  2. Blakemore R.P., 1975. Magnetotactic bacteria. Science, 190, 377–379.CrossRefGoogle Scholar
  3. Blakemore R.P., 1982. Magnetotactic bacteria. Ann. Rev. Microbiol., 36, 217–238.CrossRefGoogle Scholar
  4. Blundell A., Dearing J.A., Boyle J.F. and Hannam J.A., 2009. Controlling factors for the special variability of soil magnetic susceptibility across England and Wales. Earth Sci. Rev., 95, 158–188.CrossRefGoogle Scholar
  5. Boyko T., Schölger R., Stanek H. and MAGPROX Team, 2004. Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatability of in situ measurements. J. Appl Geophys., 55, 249–259.CrossRefGoogle Scholar
  6. Chatalov A., 2005. Monomineralic carbonate ooid types in the Triassic sediments from Northwestern Bulgaria. Geologica Balcanica, 35, 63–91.Google Scholar
  7. Conrad R. and Frenzel P., 2002. Flooded soils. In: Bitton G. (Ed), Encyclopedia of Environmental Microbiology. John Wiley & Sons, Inc., New York, 1316–1333.Google Scholar
  8. Davila A.F., Rey D., Mohamed K., Rubio B. and Guerra A.P., 2006. Mapping the sources of urban dust in a coastal environment by measuring magnetic parameters of Platanus hispanica leaves. Environ. Sci. Technol., 40, 3922–3928.CrossRefGoogle Scholar
  9. Dearing J.A., Hay K.L., Baban S.M.J., Huddleston A.S., Wellington E.M.H. and Loveland P.J., 1996. Magnetic susceptibility of soil: An evaluation of conflicting theories using a national data set. Geophys. J. Int., 127, 728–734.CrossRefGoogle Scholar
  10. Dearing J.A.; Hannam J.A.; Anderson A.S. and Wellington E.M.H., 2001. Magnetic, geochemical and DNA properties of highly magnetic soils in England. Geophys. J. Int., 144, 183–196.CrossRefGoogle Scholar
  11. Diaz F.J., O’Green A.T., Rasmussen C. and Dahlgren R.A., 2010. Pedogeneses along a thermal gradient in a geothermal region of the southern Cascades, California. Geoderma, 154, 495–507.CrossRefGoogle Scholar
  12. Evans M.E. and Heller F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, San Diego, CA.Google Scholar
  13. FAO, 2006. World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. Food and Agriculture Organization of the United Nations, Rome, ISBN: 92-5-105511-4.Google Scholar
  14. Fialová H., Maier G., Petrovský E., Kapička A., Boyko T., Schölger R. and MAGPROX Team, 2006. Magnetic properties of soils from sites with different geological and environmental settings. J. Appl Geophys., 59, 273–283.CrossRefGoogle Scholar
  15. Fortin D. and Langley S., 2005. Formation and occurrence of biogenic iron-rich minerals. Earth Sci. Rev., 72, 1–19.CrossRefGoogle Scholar
  16. Frankel R.B. and Blakemore R.P., 1990. Iron Biominerals. Plenum Press, New York.Google Scholar
  17. Giorgetti G., Monecke T., Kleeberg R. and Hannington M.D., 2009. Low-temperature hydrothermal alteration of trachybasalt at conical seamount, Papua New Guinea: Formation of smectite and metastable precursor phases. Clay Clay Min., 57, 725–741.CrossRefGoogle Scholar
  18. Gramp J.P., Wang H.M., Bigham J.M., Jones F.S. and Tuovinen O.H., 2009. Biogenic Synthesis and Reduction of Fe(III)-hydrosulfates. Geomicrobiol. J., 24, 275–280.CrossRefGoogle Scholar
  19. Guyodo Y.; LaPara T.M.; Anschutz A.J., Penn R.L., Banerjee S.K., Geiss C.E. and Zanner W., 2006. Rock magnetic, chemical and bacterial community analysis of a modern soil from Nebraska. Earth Planet. Sci. Lett., 251, 168–178.CrossRefGoogle Scholar
  20. Hanesch M. and Petersen N., 1999. Magnetic properties of a recent parabrown-earth from Southern Germany. Earth Planet. Sci. Lett., 169, 85–97.CrossRefGoogle Scholar
  21. Hanesch M., Scholger R. and Rey D., 2003. Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atmos. Environ., 37, 5125–5133.CrossRefGoogle Scholar
  22. Hanzlik M., Winklhofer M. and Petersen N., 1996b. Spacial arrangement of chains of magnetosomes in magnetotactic bacteria. Earth Planet. Sci. Lett., 145, 125–134.CrossRefGoogle Scholar
  23. Heywood B.R., Bazylinski D.A., Garratt-Reed A., Mann S. and Frankel R.B., 1990. Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften, 77, 536–538.CrossRefGoogle Scholar
  24. Hori T., Müller A., Igarashi Y., Conrad R. and Friedrich M.W., 2010. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. The ISME Journal, 4, 267–278.CrossRefGoogle Scholar
  25. Jelenska M., Hasso-Agopsowicz A. and Kopcewicz B., 2010. Thermally induced transformation of magnetic minerals in soil based on rock magnetic study and Mossbauer analysis. Phys. Earth Planet. Inter., 179, 164–177.CrossRefGoogle Scholar
  26. Jordanova N.V., Jordanova D.V., Veneva L., Yorova K. and Petrovský E., 2003. Magnetic response of soils and vegetation to heavy metal pollution — A case study. Environ. Sci. Technol., 37, 4417–4424.CrossRefGoogle Scholar
  27. Kapička A., Petrovský E., Ustjak S. and Macháčková K., 1999. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J. Geochem. Explor., 66, 291–297.CrossRefGoogle Scholar
  28. Kapička A., Jordanova N., Petrovský E. and Podrázský V., 2001. Effect of different soil conditions on magnetic parameters of power-plant fly ashes. J. Appl.Geophys., 48, 93–102.CrossRefGoogle Scholar
  29. Kapička A., Jordanova N., Petrovský E. and Podrázský V., 2003. Magnetic study of weakly contaminated forest soils. Water Air Soil Pollut., 148, 31–44.CrossRefGoogle Scholar
  30. Kapička A., Petrovský E., Fialová H. and Podrázský V., 2008. High resolution mapping of anthropogenic pollution in the Giant Mountains National Park using soil magnetometry. Stud. Geophys. Geod., 52, 271–284.CrossRefGoogle Scholar
  31. Koleva E. and Peneva R., 1990. Climate Reference Book. Precipitation in Bulgaria. Bulgarian Academy of Sciences, Sofia, Bulgaria (in Bulgarian).Google Scholar
  32. Koleva-Rekalova E. and Metodiev L., 2007. Diagenetic evolution of the Toarcian iron-ooidal limestones and the Upper Pliensbachian — Lower Bajocian hemipelagic sediments. evidence from two sections of western Balkan Mts (Bulgaria) on the base of isotope (13C and 18O) data. Comptes Rendus de l’Academie Bulgare des Sciences, 60, 1085–1092.Google Scholar
  33. Le Borgne E., 1955. Susceptibilité magnétique anormale du sol superficiel. Ann. Géophys., 11, 399–419.Google Scholar
  34. Lecoanet H., Lévêque F. and Ambrosi J.P., 2001. Magnetic properties of salt-marsh soils contaminated by iron industry emissions (southeast France). J. Appl. Geophys., 48, 67–81.CrossRefGoogle Scholar
  35. Liu H., Ma M.R., Qin M., Yang L.J. and Wie Y., 2010. Studies on the controllable transformation on ferryhydrite. J. Solid State Chem., 183, 2045–2050.CrossRefGoogle Scholar
  36. Lowrie W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett., 17, 159–162.CrossRefGoogle Scholar
  37. Mageira T., Kapička A., Petrovský E., Strzyszcz Z, Fialová H. and Rachwal M., 2008. Magnetic anomalies of forest soils in the Upper Silesia-Northern Moravia region. Environ. Pollut., 156, 618–628.CrossRefGoogle Scholar
  38. Mann S., Sparks N.H.C., Frankel R.B., Bazylinski D.A. and Jannasch H.W., 1990a. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343, 258–261.CrossRefGoogle Scholar
  39. Mathé V. and Lévêque F., 2003. High resolution magnetic survey for soil monitoring: detection of drainage and soil tillage effects. Earth Planet. Sci. Lett., 212, 241–251.CrossRefGoogle Scholar
  40. Mathé V. and Lévêque F., 2005. Trace magnetic minerals to detect redox boundaries and drainage effects in a marshland soil in western France. Eur. J. Soil Sci., 56, 737–751.Google Scholar
  41. Metodiev L. and Koleva-Rekalova E., 2008. Stable isotope records (δ18O and δ13C) of Lower-Middle Jurassic belemnites from the Western Balkan mountains (Bulgaria): palaeoenvironmental application. Appl. Geochem., 23, 2845–2856.CrossRefGoogle Scholar
  42. Mullins C.E., 1977. Magnetic susceptibility of the soil and its significance in soil science — A review. J. Soil Sci., 28, 223–246.CrossRefGoogle Scholar
  43. Muttoni G., Gaetani M., Buduriv K., Zagorchev I., Trifonova E., Ivanova D., Petrounova L. and Lowrie W., 2000. Middle Triassic paleomagnetic data from northern Bulgaria: constrains on Tethian magnetostratigraphy and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol., 160, 223–237.CrossRefGoogle Scholar
  44. Nornberg P., Vendelboe A.L., Gunnlaugsson H.P., Merrison J.P., Finster K. and Jensen S.K., 2009. Comparison of the mineralogical effects of an experimental forest fire on a goethite/ferrihydrite soil with a topsoil that contains hematite, maghemite and goethite. Clay Min., 44, 239–247.CrossRefGoogle Scholar
  45. Patrick Jr. W.H. and Reddy C.N., 1978. Chemical Changes in Rice Soils. International Rice Institute, Los Banos, Phillipines, 361–379.Google Scholar
  46. Ponnamperuma F.N., 1972. The chemistry of submerged soils. Adv. Agronom., 24, 29–96.CrossRefGoogle Scholar
  47. Petrovský E., Hůlka Z., Kapička A. and MAGPROX Team, 2004. New tool for in-situ measurements of vertical distribution of magnetic susceptibility in soils as basis for mapping deposited dust. Environ. Technol., 25, 1021–1029.CrossRefGoogle Scholar
  48. Petrovský E. and Kapička A., 2005. Comments on “The use of field dependence of magnetic susceptibility for monitoring variations in titanomagnetite composition — a case study on basanites from the Vogelsberg 1996 drillhole, Germany” by de Wall and Nano. Stud. Geophys. Geod., 48, 767–776.Google Scholar
  49. Petrovský E. and Kapička A., 2006. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res., 111, B12S27.CrossRefGoogle Scholar
  50. Posfai M., Moskowitz B.M., Arato B., Schuler D., Flies C., Bazylinski D.A. and Frankel R.B., 2006. Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth Planet. Sci. Lett., 249, 444–455.CrossRefGoogle Scholar
  51. Roh Y., Vali H., Phelps TJ. and Moon J.W., 2006. Extracellular synthesi of magnetite and metal-substituted magnetite nanoparticies. J. Nanosci. Nanotechnol., 6, 3517–3520.CrossRefGoogle Scholar
  52. Roh Y., Jang H.D. and Suh Y., 2007. Microbial synthesis of magnetite and mn-substituted magnetite nanoparticles: Influence of bacteria and incubation temperature. J. Nanosci. Nanotechnol., 7, 3938–3943.CrossRefGoogle Scholar
  53. Rosowiecka O. and Nawrocki J., 2010. Assessment of soils pollution extent in surroundings of ironworks based on magnetic analysis. Stud. Geophys. Geod., 54, 185–194.CrossRefGoogle Scholar
  54. Schibler L., Boyko T., Ferdyn M., Gajda B., Höll S., Jordanova N., Rosler W. and MAGPROX Team, 2002. Topsoil magnetic susceptibility mapping: data reproducibility and compatibility, measurement strategy. Stud. Geophys. Geod., 46, 43–57.CrossRefGoogle Scholar
  55. Spassov S., Egli R., Heller F., Nourgaliev D.K. and Hannam J., 2004. Magnetic quantification of urban pollution sources in atmospheric particulate matter. Geophys. J. Int., 159, 555–564.CrossRefGoogle Scholar
  56. Spiteri C., Kalinami V., Rosler W., Hoffmann V., Appel E. and MAGPROX Team, 2005. Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ. Geol., 49, 1–9.CrossRefGoogle Scholar
  57. Strzyszcz Z. and Magiera T., 1998. Magnetic susceptibility and heavy metals contamination in soils of southern Poland. Phys. Chem. Earth., 23, 1127–1131.CrossRefGoogle Scholar
  58. Torrent J., Liu Q.S. and Barron V., 2010. Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: Origin and paleoenvironmental significance. Geoderma, 154, 465–472.CrossRefGoogle Scholar
  59. Torrent J., Liu Q.S. and Barron V., 2010. Magnetic susceptibility changes in relation to pedogenesis in a Xeralf chronosequence in northwestern Spain. Eur. J. Soil Sci., 61, 161–173.CrossRefGoogle Scholar
  60. Velev S., 1990. Climate in Bulgaria. Narodna prosveta, Sofia, Bulgaria (in Bulgarian).Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2011

Authors and Affiliations

  • Hana Grison
    • 1
  • Eduard Petrovský
    • 1
  • Neli Jordanova
    • 2
  • Aleš Kapička
    • 1
  1. 1.Institute of GeophysicsAcad. Sci. Czech RepublicPrague 4Czech Republic
  2. 2.National Institute of Geophysics, Geodesy and Geography BASSofiaBulgaria

Personalised recommendations