PC1 with a broad frequency spectrum — “Goose pulsations”

  • Felix Z. Feygin
  • Karel Prikner
  • Jorma Kangas


Geomagnetic pulsations in the frequency range of Pc1 pearl waves with the dynamic spectra having a very narrow spectrum width at the beginning of the event and a very broad spectrum width (Δf/f0 ∼ 1) in the later part of the event are analyzed. One of the observed events shown by the dynamic spectrum resembles a goose with the beak at the beginning of the event and with the wing in the later part of the event. Various interpretations of these geomagnetic pulsations are presented taking into account nonlinear effects, quasilinear interaction of electromagnetic ion-cyclotron waves with energetic, anisotropic protons and modulation of plasma parameters in the magnetosphere by Pc3–5 hydromagnetic waves. The ionospheric effect in the signal formation is determined by the ionospheric Alfvén resonator. It can control the frequency range of the dynamic spectra, but not the internal structure of the signal.

Key words

geomagnetic pulsations nonlinear particle-wave interaction Pc1 wave packets ionospheric Alfvén resonator (IAR) 


  1. Altman C. and Fijalkow E., 1980. The horizontal propagation of Pc1 pulsations in the ionosphere. Planet. Space Sci., 28, 61–68.CrossRefGoogle Scholar
  2. Baransky L., Golikov Yu., Feygin F., Harchenko I., Kangas J., and Pikkarainen T., 1981. Role of the plasmapause and ionosphere in the generation and propagation of the pearl pulsations. J. Atmos. Solar-Terr. Phys., 43, 875–881.CrossRefGoogle Scholar
  3. Bud’ko N.I., Karpman V.I., and Pokhotelov O.A., 1972. A non-linear theory of monochromatic circularly polarized ULF and VLF waves in the magnetosphere. Cosmic Electrodynamics, 3, 147–164.Google Scholar
  4. Campbell W.H. and Slitner E.C., 1965. Some characteristics of the geomagnetic pulsations at frequencies near 1c/s. Radio Sci., 69D, 1117.Google Scholar
  5. Campbell W.H., 1967. Low attenuation of hydromagnetic waves in the ionosphere and implied characteristics in the magnetosphere for Pc1 events. J. Geophys. Res., 72, 3429–3446.CrossRefGoogle Scholar
  6. Cornwall J.M., 1966. Micropulsations and the outer radiation zone. J. Geophys. Res., 71, 2185–2199.Google Scholar
  7. Dowden R.L., 1966. Micropulsation nose whistlers: a helium explanation. Planet. Space Sci., 14, 1273–1280.CrossRefGoogle Scholar
  8. Feygin F.Z. and Yakimenko V.L., 1969. Mechanism of pearl generation and development during cyclotron instability of the outer proton zone. Geomagn. Aeron., 9, 565–569.Google Scholar
  9. Feygin F.Z. and Yakimenko V.L., 1970. On the fine structure micropulsations of Pc1 type, Geomagn. Aeron., 10, 558–560.Google Scholar
  10. Feygin F.Z. and Yakimenko V.L., 1971. Appearance and development of geomagnetic Pc1 type micropulsations (“pearls”) due to cyclotron instability of proton belt. Ann. Geophys., 27, 49–55.Google Scholar
  11. Feygin F.Z. and Kurchashov Yu.P., 1975. A quasilinear dynamics of Pc1 geomagnetic pulsations (pearls). J. Geomagn. Geoelectr., 26, 539–548.Google Scholar
  12. Feygin F.Z., Kurchashov Yu.P. and Troitskaya V.A., 1985. Red-violet asymmetry in real satellites birth. Planet. Space Sci., 33, 271–277.CrossRefGoogle Scholar
  13. Feygin F.Z., 1987. Nature of the red-violet asymmetry in the production of “pearl” satellites. Geomagn. Aeron., 27, 908–909.Google Scholar
  14. Feygin F.Z., Kleimenova N.G., Pokhotelov O.A., Parrot M., Prikner K., Mursula K., Kangas J. and Pikkarainen T., 2000. Nonstationary pearl pulsations as a signature of magnetospheric disturbances. Ann. Geophys., 18, 517–522.CrossRefGoogle Scholar
  15. Feygin F.Z., Nekrasov A.K., Pikkarainen T., Raita T. and Prikner K., 2007. Pc1 pearl waves with magnetosonic dispersion. J. Atmos. Sol.-Terr. Phys., 69, 1644–1650.CrossRefGoogle Scholar
  16. Fraser B.J., 1968. Temporal variations in Pc1 geomagnetic pulsations. Planet. Space Sci., 16, 111–124.CrossRefGoogle Scholar
  17. Fraser B.J., 1972. Propagation of Pc1 micropulsations in proton-helium magnetosphere. Planet. Space Sci., 20, 183–189.CrossRefGoogle Scholar
  18. Fraser B.J., 1975. Ionospheric duct propagation and Pc1 pulsation sources. J. Geophys. Res., 80, 2790–2796.CrossRefGoogle Scholar
  19. Fraser B.J., Samson J.C., Hu Y.D., McPherron R.L. and Russel C.T., 1992. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2. J. Geophys. Res., 97, 3063–3074.CrossRefGoogle Scholar
  20. Fujita S., 1987. Duct propagation of a short-period hydromagnetic wave based on the international reference ionosphere model. Planet. Space Sci., 35, 91–103.CrossRefGoogle Scholar
  21. Gail W.B., 1990. Theory of electromagnetic cyclotron wave growth in time-varying magnetoplasma. J. Geophys. Res., 95, 19089–19097.CrossRefGoogle Scholar
  22. Gendrin R., Lacourly S., Roux A., Solomon J., Feygin F.Z., Gokhberg M.B., Troitskaya V.A. and Yakimenko V.L., 1971. Wave packet propagation in an amplifying medium and its application to the dispersion characteristics and to the generation mechanism of Pc1 events. Planet. Space Sci., 19, 165–194.CrossRefGoogle Scholar
  23. Greifinger C. and Greifinger P.S., 1968. Theory of hydromagnetic propagation in the ionospheric wave guide. J. Geophys. Res., 73, 7473–7490.CrossRefGoogle Scholar
  24. Guglielmi A.V. and Pokhotelov O.A., 1996. Geoelectromagnetic Waves. IOP Publ. Ltd, Bristol.Google Scholar
  25. Jacobs J.A. and Watanabe T., 1964. Micropulsation whistlers. J. Atmos. Terr. Phys., 26, 825–829.CrossRefGoogle Scholar
  26. Kangas J., Guglielmi A. and Pokhotelov O., 1998. Morphology and physics of the short-period magnetic pulsations. Space Sci. Rew., 83, 435–512.CrossRefGoogle Scholar
  27. Kennel C.F. and Petschek H.E., 1966. Limit on stably trapped particle fluxes. J. Geophys. Res., 71, 1–28.Google Scholar
  28. Loto’aniu T.M., Fraser B.J. and Waters C.L., 2005. Propagation of electro magnetic ion cyclotron wave energy in the magnetosphere. J. Geophys. Res., 110, A07214, doi: 10.1029/2004JA010816.CrossRefGoogle Scholar
  29. Lyatsky V.B. and Plyasova-Bakunina T.A., 1986. About effect of the geomagnetic pulsations Pc4 on pulsations Pc1. Geomagn. Aeron., 26, 802–806.Google Scholar
  30. Manchester R.N., 1968. Correlation of Pc1 micropulsations at spaced stations. J. Geophys. Res., 73, 3549–3556.CrossRefGoogle Scholar
  31. McPherron R.L., 1981. Substorm associated micropulsation at synchronous orbit. In: Southwood D.T. (Ed.), ULF Pulsations in the Magnetosphere. Advances in Earth and Planetary Sciences, Volume 11, D.Reidel, Norwell, Mass., Dordrecht, 57.Google Scholar
  32. Mursula K., Rasinkangas R., Bosinger T., Erlandson R.E. and Lindqvist P.A., 1997. Non-bouncing Pc1 wave bursts. J. Geophys. Res., 102, 17611–17624.CrossRefGoogle Scholar
  33. Mursula K., Braysy T., Rasinkangas R., Tanskanen P. and Mozer F., 1999. A modulated multiband Pc1 event observed by POLAR/EFI around the plasmapause. Adv. Space Res., 24, 81–84.CrossRefGoogle Scholar
  34. Mursula K., Prikner K., Feygin F.Z., Braysy T., Kangas J., Kerttula R., Pollari P., Pikkarainen T. and Pokhotelov O.A., 2000. Non-stationary Alfvén resonator: new results on Pc 1 pearls and IPDP events. J. Atmos. Terr. Phys., 62, 299–309.CrossRefGoogle Scholar
  35. Mursula K., Braysy T., Niskala K. and Russel C.T., 2001, Pc1 pearl revisited: structured electromagnetic ion cyclotron waves on Polar satellite and on ground. J. Geophys. Res., 106(A12), 29543–29553.CrossRefGoogle Scholar
  36. Nishida A., 1978. Geomagnetic Diagnosis of the Magnetosphere. Springer-Verlag, New York-Heidelberg-Berlin.Google Scholar
  37. Obayashi T., 1965. Hydromagnetic whistlers. J. Geophys. Res., 70, 1069–1087.CrossRefGoogle Scholar
  38. Perraut S., Gendrin R., Roux A. and de Villedary C., 1984. Ion cyclotron waves: direct comparison between ground-based measurements and observations in the source region. J. Geophys. Res., 89(A1), 195–202.CrossRefGoogle Scholar
  39. Plyasova-Bakunina T.A., Kangas J., Mursula K., Molchanov O.A. and Green J.A., 1996. Pc1-2 and Pc4-5 pulsations observed at a network of high latitude stations. J. Geophys. Res., 101, 10965–10973.CrossRefGoogle Scholar
  40. Polyakov S.V., Rapoport V.O. and Trakhtengerts V.Y., 1983. Alfvén’s sweep maser. Fizika Plazmy, 9, 371–378 (in Russian).Google Scholar
  41. Prikner K., 1986. The ionosphere of higher geomagnetic latitudes (L = 3 and L = 5) as a ULF wave filter. Stud. Geophys. Geod., 30, 304–319.CrossRefGoogle Scholar
  42. Prikner K. and Kerttula R., 2005. O+-reduced models of the high latitude ionosphere and the ionospheric Alfvén resonator in broadband Pc1 events. Stud. Geophys. Geod., 49, 127–139.CrossRefGoogle Scholar
  43. Prikner K. and Vagner V., 1983. Numerical modeling of the ionospheric filtration of an ULF micropulsation signal. Stud. Geophys. Geod., 27, 173–190.CrossRefGoogle Scholar
  44. Prikner K. and Vagner V., 1990. The ionosphere as an Alfvén resonator in the Pc1 micropulsation range. Stud. Geophys. Geod., 34, 342–361.CrossRefGoogle Scholar
  45. Prikner K. and Vagner V., 1991. Numerical solution to the problem of ionospheric filtration of ULF waves in the Pc1 range. The total wave field inside the ionospheric transition layer. Stud. Geophys. Geod., 35, 90–99.CrossRefGoogle Scholar
  46. Prikner K., Feygin F.Z. and Fligel D.S., 1995. On the mathematical modeling of the spectral structure of geomagnetic Pc1 pulsations via the response of Alfvén’s ionospheric resonator. Stud. Geophys. Geod., 39, 19–36.CrossRefGoogle Scholar
  47. Prikner K., Mursula K., Feygin F.Z., Kangas J., Kerttula R., Pikkarainen T., Pokhotelov O.A. and Vagner V., 2000. Non-stationary Alfvén resonator: vertical profiles of wave characteristics, J. Atmos. Sol.-Terr. Phys., 62, 311–322.CrossRefGoogle Scholar
  48. Prikner K., Mursula K., Kangas J. and Feygin F.Z., 2001. Ionospheric Alfvén resonator control over the frequency-variable Pc1 event in Finland on May 14, 1997. Stud. Geophys. Geod., 45, 363–381.CrossRefGoogle Scholar
  49. Rasinkangas R., Mursula K., Kremser G., Singer H.J., Fraser B.J., Korth A. and Hughes W.J., 1994. Simultaneous occurrence of Pc 5 and Pc1 pulsations in the downside magnetosphere: CRRES observations. In: Engebretson M.J., Takahashi K. and Scholer M. (Eds.), Solar Wind Sources of Magnetospheric Ultra-Low Frequency Waves, Geophys. Monog. Ser. 81, AGU, Washington, D.C., 417–424.Google Scholar
  50. Rasinkangas R. and Mursula K., 1998. Modulation of magnetospheric EMIC waves by Pc3 pulsations of upstream origin. Geophys. Res. Lett., 25, 869–872.CrossRefGoogle Scholar
  51. Rauch J.L. and Roux A., 1982. Ray tracing of ULF waves in multicomponent magnetospheric plasma: consequences for the generation mechanism of ion cyclotron waves. J. Geophys. Res., 87, 8191–8198.CrossRefGoogle Scholar
  52. Roux A. and Solomon J., 1971. Self-consistent solution of the quasilinear theory: Application to the spectral shape and intensity of VLF waves in the magnetosphere. J. Atmos. Terr. Phys., 33, 1457–1471.CrossRefGoogle Scholar
  53. Roux A., Gendrin R., Wehrlin N., Pellat R. and Welti R., 1973. Fine structure of Pc1 pulsations. 2. Theoretical interpretation. J. Geophys. Res., 78, 3176–3181.CrossRefGoogle Scholar
  54. Sucksdorff E., 1936. Occurrence of rapid micropulsations at Sodankylä during 1932 to 1935. J. Geophys. Res., 41, 337–344.CrossRefGoogle Scholar
  55. Trakhtengerts V.Y., Demekhov A.G., Polyakov S.V., Belyaev P.P. and Rapoport V.O., 2000. A mechanism of Pc1 pearl formation based on Alfvén sweep maser. J. Atmos. Sol.-Terr. Phys., 62, 231–238.CrossRefGoogle Scholar
  56. Tverskoy B.A., 1971. Dynamics of the Earth’s Radiation Belts. NASA. Technictranslation, F-635.Google Scholar
  57. Wehrlin N., Gendrin R., Roux A. and Welti R., 1973. Fine structure of Pc1 pulsations. 1. Experimental evidence. J. Geophys. Res., 78, 763–768.CrossRefGoogle Scholar
  58. Yahnin A.G. and Yahnina T.A., 2007. Energetic proton precipitation related to ion-cyclotron waves. J. Atmos. Sol.-Terr. Phys., 69, 1690–1706, doi: 10.1016/j.jastp.2007.02.010.CrossRefGoogle Scholar
  59. Yahnin A.G., Yahnina T.A. and Frey H.U., 2007. Subauroral proton spots visualize the Pc1 source. J. Geophys. Res., 112, A10233, doi: 10.1029/2007JA012501.CrossRefGoogle Scholar
  60. Young D.T., Perraut S., Roux A., de Villedary C., Gendrin R., Korth A., Kremser G. and Jones D., 1981. Wave-particle interaction near ωHe+ observed on GEOS 1 and 2. 1. Propagation of ion cyclotron waves in He+ -rich plasma. J. Geophys. Res., 86, 6755–6772.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2009

Authors and Affiliations

  1. 1.Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic
  3. 3.Department of Physical SciencesUniversity of OuluOuluFinland

Personalised recommendations