Studia Geophysica et Geodaetica

, Volume 53, Issue 3, pp 315–328 | Cite as

Continuous gas monitoring in the West Bohemian earthquake area, Czech Republic: First results

  • Eckhard Faber
  • Josef Horálek
  • Alena Boušková
  • Manfred Teschner
  • Ulrich Koch
  • Jürgen Poggenburg
Article

Abstract

Two stations monitoring concentrations of carbon dioxide and radon in soil gas (Oldřišská and Nový Kostel) and one station monitoring flow of carbon dioxide at a mofette (Soos) have been operated in the area of the West Bohemian earthquake swarms. We present preliminary results obtained on the base of four-year observations. We found that data are not influenced considerably by barometric pressure. Although the CO2 concentration varies greatly, the long-term trends at stations Oldřišská and Nový Kostel are similar, which indicates that the CO2 flow is controlled by common geogenic processes. Also temporal trends of CO2 and Rn concentrations in soil gas at individual stations are analogous. We found diurnal variations of both CO2 concentration in soil gas and the CO2 flow at mofettes due to the earth tides. A response to tides of semi-diurnal period is insignificant in CO2 concentration and only weak in the CO2 flow. We also examined possible pre-seismic, co-seismic and post-seismic effects of the intensive 2008 earthquake swarm on the CO2 concentration at Oldřišská and Nový Kostel, and on the CO2 flow at Soos. However, all potential indications were insignificant and there has not been proven any influence of the swarm on the CO2 concentration as well as on the CO2 flow. Nevertheless, a gradual decrease of amplitudes of diurnal variations before the swarm and the lowest amplitudes during the swarm is a noteworthy phenomenon, which might indicate the strain changes of the rock associated with earthquake swarm.

Key words

West Bohemian earthquake area earthquake swarms gas monitoring soil gas carbon dioxide radon CO2 flow mofette time series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audin L., Avouac J.Ph. and Flouzat M., 2002. Fluid-driven seismicity in a stable tectonic context; the Remiremont fault zone, Vosges, France. Geophys. Res. Lett., 29, 6–15.CrossRefGoogle Scholar
  2. Bankwitz P., Schneider G., Kämpf H. and Bankwitz E., 2003. Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J. Geodyn., 35, 5–32.CrossRefGoogle Scholar
  3. Chyi L.L., Quick T.J., Yang T.F. and Chen C.H., 2005. Soil gas radon spectra and earthquake prediction. TAO, 16, 763–774.Google Scholar
  4. Faber E., Morán C., Poggenburg J., Garzón G. and Teschner M., 2003. Continuous gas monitoring at Galeras volcano, Colombia: first evidence. J. Volcanol. Geotherm. Res., 125, 13–23.CrossRefGoogle Scholar
  5. Fischer T. and Horálek J, 2003. Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 1985–2001. J. Geodyn., 35, 125–144.CrossRefGoogle Scholar
  6. Fischer T. and Michálek J., 2008. Post 2000-swarm microearthquake activity in the principal focal zone of West Bohemia/Vogtland: space-time distribution and waveform similarity analysis. Stud. Geophys. Geod., 52, 493–511.CrossRefGoogle Scholar
  7. Heinicke J. and Koch U., 2000. Slug flow-a possible explanation for hydrogeochemical earthquake precursors at Bad Brambach, Germany. Pure Appl. Geophys., 157, 1621–1641.CrossRefGoogle Scholar
  8. Horálek J. and Fischer T., 2008. Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: just what we know (a review). Stud. Geophys. Geod., 52, 455–478.CrossRefGoogle Scholar
  9. Horálek J, Fischer T., Boušková A., Michálek J. and Hrubcová P., 2009. The West Bohemia 2008 Earthquake swarm: when, where, what size and data. Stud. Geophys. Geod., 53, 351–358.CrossRefGoogle Scholar
  10. King C.Y., 1980. Episodic radon changes in subsurface soil gas along active faults and possible relation to eathquake. J. Geophys. Res., 85, 3065–3079.CrossRefGoogle Scholar
  11. King C.-Y., Zhang W. and Zhang Z., 2006. Earthquake-induced groundwater and gas changes. Pure Appl. Geophys., 163, 633–645, doi: 10.1007/s00024-006-0049-7.CrossRefGoogle Scholar
  12. Koch U., Heinicke J. and Vossberg M., 2003. Hydrogeological effects of the latest Vogtland-NW Bohemian swarmquake period (August to December 2000). J. Geodyn., 35, 107–123.CrossRefGoogle Scholar
  13. Satake H., Ohashi M. and Hayashi Y., 1985. Discharge of H2 from the Atotsugawa and Ushikubi faults, Japan, and its relation to earthquakes. Pure Appl. Geophys., 122, 185–193.CrossRefGoogle Scholar
  14. Sugisaki R., 1978. Changing He/Ar and N2/Ar ratios of fault air may be earthquake precursors. Nature, 275, 209–211.CrossRefGoogle Scholar
  15. Sugisaki R., Anno H. and Adachi M., Ui H., 1980. Geochemical features of gases and rocks along active faults. Geochem. J., 14, 101–112.Google Scholar
  16. Škuthan B., Hron J., Pěček J. and Keprta M., 2001. Carbon dioxide field in the West Bohemian Spring Region: Introductory results. Bull. Czech Geol. Surv., 76/4, 203–208.Google Scholar
  17. Toutain J.-P. and Baubron J.-C., 1999. Gas geochemistry and seismotectonics: a review. Tectonophysics, 304, 1–27.CrossRefGoogle Scholar
  18. Weinlich F.H., Bräuer K., Kämpf H., Strauch G., Tesar J. and Weise S.M., 1999. An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C and N) and compositional fingerprints. Geochim. Cosmochim. Acta, 63, 3653–3671.CrossRefGoogle Scholar
  19. Weinlich F.H., Faber E., Boušková A., Horálek J., Teschner M. and Poggenburg J., 2006. Seismically induced variations in Mariánská Lázně fault gas composition in the NW Bohemian swarm quake region, Czech Republic-a continuous gas monitoring. Tectonophysics, 421, 89–110.CrossRefGoogle Scholar
  20. Wenzel H.G. 1995. The nanogal software: Earth tide data processing package ETERNA 3.30. Bull. Inf. Mar. Terr. (Bruxelles), 124, 9425–9439.Google Scholar
  21. Woith H. and Pekdeger A., 1992. Soil radon and non-tectonic effects: A contribution to the joint German-Turkish project on earthquake prediction research. In: Dubois C. (Ed.), Gas Geochemistry. Science Reviews, Univ. Franche-Comté, Besançon, France, 135–146.Google Scholar
  22. Yang T.F., Fu C.-C., Walia V., Chen C.-H., Chyi L.L., Liu T.-K., Song S.-R., Lee M., Lin C.-W. and Lin, C.-C., 2006. Seismo-Geochemical Variations in SW Taiwan: Multi-Parameter Automatic Gas Monitoring Results. Pure Appl. Geophys., 163, 693–709, doi: 10.1007/s00024-006-0040-3.CrossRefGoogle Scholar
  23. Zoback M.D. and Harjes H.-P., 1997. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J. Geophys. Res., 102, 18477–18491.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2009

Authors and Affiliations

  • Eckhard Faber
    • 1
  • Josef Horálek
    • 2
  • Alena Boušková
    • 2
  • Manfred Teschner
    • 1
  • Ulrich Koch
    • 3
  • Jürgen Poggenburg
    • 1
  1. 1.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
  2. 2.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic
  3. 3.Research Group Freiberg/Bad BrambachSaxonian Academy of Sciences at LeipzigBad BrambachGermany

Personalised recommendations