Studia Geophysica et Geodaetica

, Volume 53, Issue 3, pp 295–314 | Cite as

Geological interpretation of gravity profiles through the Karlovy Vary granite massif (Czech Republic)

  • Vratislav Blecha
  • Miroslav Štemprok
  • Tomáš Fischer


We examined the shape of the Late Variscan Karlovy Vary granite massif located south of the Ohre/Eger graben in Northern Bohemia by reinterpretation of existing gravity data on two perpendicular profiles. The granite body of about 360 km2 total outcrop size has the elongation ratio 0.35 with the major axis trending NE-SW. The SW part of the body was crossed in the nineties by the seismic profile 9HR which localized the bottom of granites in a depth of about 10 km. We used this value as a reference datum in our gravity profiles. We positioned one of our profiles along the seismic profile 9HR and the other one perpendicularly, i.e. parallel with the elongation of the outcrop surface. We interpret the shape of the main granite body in the vicinity of Karlovy Vary as a continuous desk whose floor is horizontal (or subhorizontal) and varies along its whole extension about a depth of 10 km. This thickness is approximately identical with that of the Saxothuringian nappes imaged by seismic reflection. The near surface upper contact of the granite body is mildly inclined, and outward dipping. It changes to steep sides or inward inclined contacts in deeper levels. The Lesný-Lysina (Kynžvart) massif is a separate granite body about 324 km thick, not continuously connected with the main Karlovy Vary massif. The gravity curve suggests that granites often enclose in their endocontact large blocks of country metasediments or metabasites the existence of which is partly evidenced by their outcrops outside the line of the profile. The granite body is found density-homogenous. Minor density differences between granite varieties are caused mainly by more intense hydrothermal alterations in younger suite granites. We interpret vertical conduits for the ascent of granitic magmas to be parallel to the Jáchymov-Gera and Ohře (Eger) lineaments or the Mariánské Lázně fault zone as indicated by the elongation of some outcrops. However, they are not clearly imaged from the gravity data. The effect of the depression of the Sokolov basin along the faults parallel with the Ohře (Eger) lineament is shallow and it is not indicated by any change in the floor depth of the granite body. Comparison of the seismicity distribution suggests that the hypocenters occur mostly outside of the granite bodies or near their contact with the country rock.

Key words

Variscan granites gravity modeling Karlovy Vary Massif Western Bohemia Saxothuringian zone Ohře/Eger graben 

List of abbreviations


Ohře/Eger graben


intrusion of YIC granite in Karlovy Vary


Krudum massif


Karlovy Vary pluton


Karlovy Vary massif


Lesný-Lysina massif


Mariánské Lázně complex


Mariánské Lázně fault


Nejdek-Eibenstock massif


Older Intrusive Complex


Western Krušné hory (Erzgebirge) pluton


Two-ways travel time


Younger Intrusive Complex


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babuška V. and Plomerová J., 2008. Control of paths of Quaternary volcanic products in Western Bohemian Massif by rejuvenated Variscan triple junction of ancient microplates. Stud. Geophys. Geod., 52, 607–630.CrossRefGoogle Scholar
  2. Bankwitz P. and Bankwitz E., 1994. Crustal structure of the Erzgebirge. In: Seltman R., Kämpf H. and Möller P. (Eds.), Metallogeny of Collisional Orogens. Czech Geol. Survey, Prague, Czech Republic, 20–34.Google Scholar
  3. Behr H.-J., Dürbaum H.-J. and Bankwitz P., 1994. Crustal structure of the Saxothuringian Zone: Results of the deep seismic profile MVE-90(East). Z. Geol. Wiss., 22, 647–769.Google Scholar
  4. Behrmann J.H. and Tanner D.C., 1997. Carboniferous tectonics of the Variscan basement collage in eastern Bavaria and western Bohemia. Geol. Rundsch., 86, Suppl., 15–27.CrossRefGoogle Scholar
  5. Blecha V., Štemprok M. and Vigneresse J.L., 2007. The floor of the Western Krušné hory (Erzgebirge) granite pluton (Czech Republic) as viewed from the gravity data. Geochim. Cosmochim. Acta, 71, Suppl., A97.Google Scholar
  6. Blížkovský M., Burda M., Ibrmajer J., Jakubcová I., Pick M., Suk M. and Vyskočil V., 1984. Modeling of the density distribution of the Bohemian Massif. Density distribution of the lithosphere: static and dynamic models. Bulletin Géodésique, 58, 1–11.CrossRefGoogle Scholar
  7. Boušková A., Fischer T., Horálek J. and Hudová Z., 2008. WEBNET Catalogues of Local Earthquakes.
  8. Brocher T.M., 2008. Key elements of regional seismic velocity models for long period ground motion simulations. J. Seismol., 12, 217–221.CrossRefGoogle Scholar
  9. Cháb J., Stráník Z. and Eliáš M., 2007. Geological Map of the Czech Republic 1:500 000. Czech Geological Survey, Prague, Czech Republic.Google Scholar
  10. Cruden A.R., 2006. Emplacement and growth of plutons: implications for rates of melting and mass transfer in continental crust. In: Brown M. and Rushmer T. (Eds.), Evolution and Differentiation of the Continental Crust. Cambridge University Press, Cambridge, 455–519.Google Scholar
  11. Dukhovskii A.A. (Ed.), 1981. Geological mapping of rock volumes in rare-metal ore districts. Instructions for Geological Mapping at a Scale of 1:50 000, 8, Nedra, Leningrad, Russia (in Russian).Google Scholar
  12. Franke W., 1989. Tectonostratigraphic units in the Variscan belt of Central Europe. Geol. Soc. Am. Spec. Paper, 230, 67–90.Google Scholar
  13. Franke W., 2000. The mid-European segment of the Variscides: tectonometamorphic units, terrane boundaries, and plate tectonic evolution. In: Franke W., Haak V., Oncken O. and Tanner D. (Eds.), Orogenic Processes-Quantification and Modelling in the Variscan Belt of Central Europe. Geol. Soc. London Spec. Pub., 179, 35–61.Google Scholar
  14. Grosse S., Oelsner C. and Sonntag K., 1961. Ergebnisse der Gravimeter Messungen im Westerzgebirge. Freib. Forsch.-H. R., C110, 55–102 (in German).Google Scholar
  15. Havíř J., 2005. Orientations of principal paleostresses in the Western Bohemia seismoactive region and their comparison with the recent stresses. J. Czech. Geol. Soc., 50, 133–143.Google Scholar
  16. Hecht L., Vigneresse J. L. and Morteani G., 1997. Constraints on the origin of zonation of the granite complexes in the Fichtelgebirge (Germany and Czech Republic): evidence from a gravity and geochemical study. Geol. Rundsch., 86, Suppl., 93–109.CrossRefGoogle Scholar
  17. Hofmann I., Jahr T. and Jentzsch G., 2003. Three-dimensional gravimetric modelling to detect deep structure of the region Vogtland/NW-Bohemia. J. Geodyn., 35, 209–220.CrossRefGoogle Scholar
  18. Hradecký P., 1997. The Doupov Mountains. In: Vrána S. and Štědrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci., 47, 125–127.Google Scholar
  19. Jelínek E., Štědrá V. and Cháb J., 1997. The Mariánské Lázně complex. In: Vrána S. and Štědrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci., 47, 43–50.Google Scholar
  20. Kossmat F., 1927. Gliederung des varistischen Gebirgbaues. Abh. Sächs. Geol. Landesamt, Hft.1, 1–39 (in German).Google Scholar
  21. Kováříková P., Siebel W., Jelínek E., Štemprok M., Kachlík V., Holub F. and Blecha V., 2007. Petrology, geochemistry and zircon age for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): tracing the mantle component in Late Variscan intrusions. Chemie der Erde-Geochemistry, 67, 151–174.CrossRefGoogle Scholar
  22. Kováříková P., Siebel W., Jelínek E., Štemprok M., Kachlík V., Holub F. and Blecha V., 2009. Dioritic intrusions of the Slavkovský les (Kaiserwald), Western Bohemia: their position and significance during late Variscan granitoid magmatism. Int. J. Earth Sci., doi 10.1007/s00531-008-0406-0 (in print).Google Scholar
  23. Krawczyk C.M., Stein E., Choi S., Oetinger G., Schuster K., Götze H.-J., Haak V., Oncken O., Prodehl C. and Schulze A., 2000. Geophysical constraints on exhumations mechanism of high-pressure rocks: the Saxo-Thuringian case between the Franconian Line and Elbe Zone. In: Franke W., Haak V., Oncken O. and Tanner D. (Eds.), Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol. Soc. London Spec. Pub., 179, 303–322.Google Scholar
  24. Kroner U. and Hahn T., 2003. Sedimentation, Deformation in Metamorphose im Saxothuringikum während der variszischen Orogenese: Die komplexe Entwicklung von Nord-Gondwana während kontinentäler Subduktion und scheifer Kollision. In: Linnemann U. (Ed.), Das Saxothuringikum. Staatliche Naturhistorische Sammlungen Dresden, 133–146 (in German).Google Scholar
  25. Kroner U., Hahn T., Romer R.L. and Linnemann U., 2007. The Variscan orogeny in the Saxo-Thuringian zone-Heterogenous overprint of Cadomian/Paleozoic Peri-Gondwana crust. In: Linnemann U., Nance R.D., Kraft P. and Zulauf G., (Eds.), The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision. Geol. Soc. Am. Spec. Paper, 423, 153–172.Google Scholar
  26. Lange H., Tischendorf G., Pälchen W., Klemm I. and Ossenkopf W., 1972. Fortschritte der Metalogenie im Erzgebirge. Zur Petrographie und Geochemie der Granite des Erzgebirges. Geologie, 21, 457–493 (in German).Google Scholar
  27. Linnemann U., Mc Naughton N.J., Romer R.L., Gehmlich M., Drost K. and Tonk C., 2004. West African provenance of Saxothuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana?-U/Pb SHRIMP zircon evidence and the Nd-isotopic record. Int. J. Earth Sci., 93, 683–705.CrossRefGoogle Scholar
  28. Matte P., Maluski H., Rajlich P. and Franke W., 1990. Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearing. Tectonophysics, 177, 15–170.CrossRefGoogle Scholar
  29. Mlčoch B., Schulmann K., Šrámek J., Manová M., Pokorný L., Fiala J. and Vejnar Z., 1997. The Saxothuringian zone In: Vrána S. and Štědrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci., 47, 51–61.Google Scholar
  30. Mlčoch B., 2006. Ultrabasic rocks of the basement below the Tertiary volcanites of the Doupovské Hory Mts. Geoscience Research Reports for 2005, Czech Geological Survey, Prague, Czech Republic, 25–26 (in Czech with English Abstract).Google Scholar
  31. Mingram B., Kröner A., Hegner E. and Krentz O., 2004. Zircon ages, geochemistry and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany) and geodynamic interpretation. Int. J. Earth Sci., 93, 706–727.CrossRefGoogle Scholar
  32. Mísař Z., Dudek A., Havlena V. and Weiss J., 1983. Geology of ČSSR I, Bohemian Massif. SPN Praha, Czech Republic, 333 pp. (in Czech).Google Scholar
  33. Mrlina J. and Seidl M., 2008. Relation of surface measurements in West Bohemia to earthquake swarms. Stud. Geophys. Geod., 52, 549–566.CrossRefGoogle Scholar
  34. Müller H.J., 1995. Modelling the lower crust by simulation of in situ conditions: an example from the Saxonian Erzgebirge. Phys. Earth Planet. Inter., 92, 3–15.CrossRefGoogle Scholar
  35. Murphy J.B., Pisarevsky S.A., Nance R.D. and Keppie J.D., 2004. Neoproterozoic-Early Paleozoic evolution for the Laurentia-Gondwana connections. Int. J. Earth Sci., 93, 659–682.CrossRefGoogle Scholar
  36. Najman K., Novák J. K. and Kozubek P., 1988. New reserves of tin-tungsten ores at the Hub and Schnöd stocks. Geologický průzkum, 30, 129–133 (in Czech).Google Scholar
  37. Passchier C.W., Trouw R.A.J., Goscombe B., Gray D. and Kröner A., 2007. Intrusion mechanisms in a turbidite sequence: the Voetspoor and Doros plutons in NW Namibia. J. Struct. Geol., 29, 481–496.CrossRefGoogle Scholar
  38. Petford N., Cruden A.R., McCaffrey K.J.W. and Vigneresse J.-L., 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408, 669–673.CrossRefGoogle Scholar
  39. Romer R.L., Thomas R., Stein H.J. and Rhede D., 2007. Dating multiply overprinted Snmineralized granites-examples from the Erzgebirge. Germany. Mineralium Deposita, 42, 337–359.CrossRefGoogle Scholar
  40. Růžek B., Hrubcová P., Novotný M., Špičák A. and Karousová O., 2007. Inversion of traveltimes obtained during active seismic refraction experiments CELEBRATION 2000, ALP 2002 and SUDETES 2003. Stud. Geophys. Geod., 51, 141–164.CrossRefGoogle Scholar
  41. Scholz C.H., 2002. The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge, 8–9, 210–221.Google Scholar
  42. Siebel W., Trzebski R., Stettner G., Hecht L., Casten U., Höhndorf A. and Müller P., 1997. Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept. Geol. Rundsch., 86, Suppl., 45–63.CrossRefGoogle Scholar
  43. Škvor V., 1986. The granite pluton of the Krušné hory and its interpretation. Bull. Geol. Surv. Prague, 65–71 (in Czech).Google Scholar
  44. Škvor V. and Satran V., 1974. Krušné Hory-Western Part. Scale 1:50 000. Central Geological Institute, Prague, Czech Republic (in Czech).Google Scholar
  45. Štemprok, M., 1986. Petrology and geochemistry of the Czechoslovak part of the Krušné hory Mts. Granite pluton. Sborník geologických věd, ložisková geologie a mineralogie, 27, 111–156.Google Scholar
  46. Švancara J. and Chlupáčová M., 1997. Density model of geological structure along the profile 9HR. In: Vrána S. and Štědrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci., 47, 32–35.Google Scholar
  47. Švancara J., Gnojek I., Hubatka F. and Dědáček K., 2000. Geophysical field pattern in the West Bohemian geodynamic active area. Stud. Geophys. Geod., 44, 307–326.CrossRefGoogle Scholar
  48. Švancara J., Havíř J. and Conrad W., 2008. Derived gravity field of the seismogenic upper crust of SE Germany and West Bohemia and its comparison with seismicity. Stud. Geophys. Geod., 52, 567–588.CrossRefGoogle Scholar
  49. Taylor G.K., 2007. Pluton shapes in the Cornubian batholith: new perspectives from gravity modelling. J. Geol. Soc. London, 164, 525–528.CrossRefGoogle Scholar
  50. Tomek Č., Dvořáková V. and Vrána S., 1997. Geological interpretation of the 9HR and 503M seismic profiles in western Bohemia. In: Vrána S. and Štědrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci., 47, 43–50.Google Scholar
  51. Trzebski R., 1997. Morphogenesis, tectonic setting and intrusion dynamics of the late-Variscan granites at the north-west margin of the Bohemian Massif. Göttinger Arbeiten zur Geologie und Paleontologie, 69, 1–66.Google Scholar
  52. Trzebski R., Behr H.J. and Conrad W., 1997. Subsurface distribution and tectonic setting of the late-Variscan granites in the northwestern Bohemian Massif. Geol. Rundsch., 86, Suppl., 64–78.CrossRefGoogle Scholar
  53. Willis-Richard J. and Jackson N., 1989. Evolution of the Cornubian ore field, SW-England. Part I. Batholith modeling and ore distribution. Econ. Geol., 84, 1078–1100.CrossRefGoogle Scholar
  54. Zoubek V., 1951. Preliminary report of the geological research in the area of the Karlovy Vary pluton. Věstník Ústředního Ústavu Geologického, 26, 166–179 (in Czech).Google Scholar
  55. Zoubek V. (Ed.), 1996. Geological Map of the Czech Republic, Map of the Pre-Quaternary Formations, Sheet KarlovyVary-Plauen. Czech Geological Survey, Prague, Czech Republic.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2009

Authors and Affiliations

  • Vratislav Blecha
    • 1
  • Miroslav Štemprok
    • 2
  • Tomáš Fischer
    • 1
    • 3
  1. 1.Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.Institute of Petrology and Structural Geology, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  3. 3.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic

Personalised recommendations