Studia Geophysica et Geodaetica

, Volume 53, Issue 3, pp 275–294 | Cite as

The crust-mantle transition and the Moho beneath the Vogtland/West Bohemian region in the light of different seismic methods

Article

Abstract

The structure of the crust and the crust-mantle boundary in the Vogtland/West Bohemian region have been a target of several seismic measurements for the last 25 years, beginning with the steep-angle reflection seismic studies (DEKORP-4/KTB, MVE-90, 9HR), the refraction and wide-angle experiments (GRANU’95, CELEBRATION 2000, SUDETES 2003), and followed by passive seismic studies (receiver functions, teleseismic tomography). The steep-angle reflection studies imaged a highly reflective lower crust (4 to 6 km thick) with the Moho interpreted in a depth between 30 and 32 km and a thinner crust beneath the Eger Rift. The refraction and wide-angle reflection seismic studies (CELEBRATION 2000) revealed strong wide-angle reflections in a depth of 26–28 km interpreted as the top of the lower crust. Long coda of these reflections indicates strong reflectivity in the lower crustal layer, a phenomenon frequently observed in the Caledonian and Variscan areas. The receiver function studies detected one strong conversion from the base of the crust interpreted as the Moho discontinuity at a depth between 27 and 37 km (average at about 31 km). The discrepancies in the Moho depth determination could be partly attributed to different background of the methods and their resolution, but could not fully explain them. So that new receivers function modelling was provided. It revealed that, instead of a first-order Moho discontinuity, the observations can be explained with a lower crustal layer or a crust-mantle transition zone with a maximum thickness of 5 km. The consequent synthetic ray-tracing modelling resulted in the model with the top of the lower crust at 28 km, where highly reflective lower crustal layer can obscure the Moho reflection at a depth of 32–33 km.

Key words

Bohemian Massif Vogtland/West Bohemia crustal structure Moho refraction and wide-angle reflection receiver function seismic methods Eger Rift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton P.J., Matthews D., Hall J. and Warner M., 1984. Moho beneath the North Sea compared on normal incidence and wide-angle seismic records. Nature, 308, 55–56.CrossRefGoogle Scholar
  2. Behr H.-J., Dürbaum H.-J. and Bankwitz P., 1994. Crustal structure of the Saxothuringian Zone: Results of the deep seismic profile MVE-90(East). Z. Geol. Wiss., 22, 647–769.Google Scholar
  3. Birch F., 1961. The velocity of compressional waves in rocks to 10 kilobars, part 2. J. Geophys. Res., 66, 2199–2224.CrossRefGoogle Scholar
  4. Braile L.W. and Chiang C.S., 1986. The continental Mohorovičić discontinuity: results from near vertical and wide-angle seismic reflection studies. In: Barazangi M. and Brown L. (Eds.), Reflection Seismology: A Global Perspective. Amer. Geophys. Union, Geodynamics Series, 13, 257–272.Google Scholar
  5. Bräuer K., Kämpf H., Niedermann S. and Strauch G., 2005a. Evidence for ascending upper mantle-derived melt beneath the Cheb basin, central Europe. Geophys. Res. Lett., 32, L08303, doi: 10.1029/2004GL022205.CrossRefGoogle Scholar
  6. Bräuer K., Kämpf H., Niedermann S. and Strauch G., 2005b. Correction to “Evidence for ascending upper mantle-derived melt beneath the Cheb basin, central Europe”. Geophys. Res. Lett., 32, L18304, doi: 10.1029/2005GL02434.CrossRefGoogle Scholar
  7. Červený V. and Pšenčík I., 1984. SEIS83-Numerical modelling of seismic wave fields in 2-D laterally varying layered structures by the ray method. In: Engdal E.R. (Ed.), Documentation of Earthquake Algorithms. Rep.SE-35, World Data Center A, Boulder, CO, 36–40.Google Scholar
  8. Cook F.A., 2002. Fine structure of the continental reflection Moho. GSA Bull., 114, 64–79.CrossRefGoogle Scholar
  9. Cox K.G., 1980. A model for flood basalt volcanism. J. Petrol., 21, 629–650.Google Scholar
  10. DEKORP Research Group, 1988. Results of the DEKORP 4/KTB Oberpfalz deep seismic reflection investigations. J. Geophys., 62, 69–101.Google Scholar
  11. DEKORP Research Group, 1994. The deep reflection seismic profiles DEKORP 3/MVE-90. Z. Geol. Wiss., 22, 623–824.Google Scholar
  12. DEKORP and Orogenic Processes Working Groups, 1999. Structure of the Saxonian Granulites: Geological and geophysical constraints on the exhumation of high-pressure/high-temperature rocks in the mid-European Variscan belt. Tectonics, 18, 756–773.CrossRefGoogle Scholar
  13. Enderle U., Schuster K., Prodehl C., Schultze A. and Briebach J., 1998. The refraction seismic experiment GRANU’95 in the Saxothuringian belt, southeastern Germany. Geophys. J. Int., 133, 245–259.CrossRefGoogle Scholar
  14. Fischer T. and Horálek J., 2003. Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 1985–2001. J. Geodyn., 35, 125–144.CrossRefGoogle Scholar
  15. Fischer T. and Michálek J., 2008. Post 2000-swarm microearthquake activity in the principal focal zone of West Bohemia/Vogtland: space-time distribution and waveform similarity analysis. Stud. Geophys. Geod., 52, 493–511.CrossRefGoogle Scholar
  16. Fuchs K. and Müller G., 1971. Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys. J. R. Astron. Soc., 23, 417–433.Google Scholar
  17. Geissler W.H., Kämpf H., Kind R., Klinge K., Plenefisch T., Horálek J., Zedník J. and Nehybka V., 2005. Seismic structure and location of a CO2 source in the upper mantle of the western Eger rift, Central Europe. Tectonics, 24, TC5001, doi: 10.10292004TC001672.CrossRefGoogle Scholar
  18. Geissler W.H., Kind R. and Yuan X., 2008. Upper mantle and lithospheric heteroheneities in central and eastern Europe seen by teleseismic receiver functions. Geophys. J. Int., 174, 351–376, doi: 10.1111/j.1365-246x.2008.03767.x.CrossRefGoogle Scholar
  19. Grad M., Guterch A., Mazur S., Keller G.R., Špičák A., Hrubcová P., Geissler W.H. and SUDETES 2003 Working Group, 2008. Lithospheric structure of the Bohemian Massif and adjacent Variscan belt in central Europe based on Profile S01 from the SUDETES 2003 experiment. J. Geophys. Res., 113, B10304, doi: 10.1029/2007JB005497.CrossRefGoogle Scholar
  20. Guterch A., Grad M., Keller G.R., Posgay K., Vozár J., Špičák A., Brueckl E., Hajnal Z., Thybo H., Selvi O. and CELEBRATION 2000 Experiment Team, 2003. CELEBRATION 2000 seismic experiment. Stud. Geophys. Geod., 47, 659–670.CrossRefGoogle Scholar
  21. Hammer P.T.C. and Clowes R.M., 1997. Moho reflectivity patterns-a comparison of Canadian lithoprobe transects. Tectonophysics, 269, 179–198.CrossRefGoogle Scholar
  22. Heuer B., Geissler W.H., Kind R. and Kämpf H., 2006. Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geophys. Res. Lett., 33, L05311, doi: 10.1029/2005GL025158.CrossRefGoogle Scholar
  23. Horálek J., Boušková A., Hampl F. and Fischer T., 1996. Seismic regime of the West-Bohemian earthquake swarm region: Preliminary results. Stud. Geophys. Geod., 40, 398–412.CrossRefGoogle Scholar
  24. Horálek J., Fischer T., Bousková A. and Jedlička P., 2000. The Western Bohemia/Vogtland region in the light of the Webnet network. Stud. Geophys. Geod., 44, 107–125.CrossRefGoogle Scholar
  25. Hrubcová P., Środa P., Špičák A., Guterch A., Grad M., Keller R., Brückl E. and Thybo H., 2005. Crustal and uppermost mantle structure of the Bohemian Massif based on data from CELEBRATION 2000 experiment. J. Geophys. Res., 110, B11305, doi: 10.1029/2004JB003080.CrossRefGoogle Scholar
  26. Jensen S.L., Janik T., Thybo H. and POLONAISE Working Group, 1999. Seismic structure of the Palaeozoic Platform along POLONAISE’97 profile P1 in northwestern Poland. Tectonophysics, 314, 123–144.CrossRefGoogle Scholar
  27. Jones K.A., Warner M.R., Morgan R.P.L., Morgan J.V., Barton P.J. and Price C.E., 1996. Coincident normal-incidence and wide-angle reflections from the Moho: evidence for crustal seismic anisotropy. Tectonophysics, 264, 205–217.CrossRefGoogle Scholar
  28. Kennett B.L.N. and Engdahl E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105, 429–565.CrossRefGoogle Scholar
  29. Kind R., Kosarev G.L. and Petersen N.V., 1995. Receiver functions at the Stations of the German Regional Seismic Network (GRSN). Geophys. J. Int., 121, 191–202.CrossRefGoogle Scholar
  30. Kolář P. and Boušková A., 2003. On some anomalies of Vp/Vs ratio of West Bohemain swarm 2000-preliminary results. Acta Montana, 22, 51–57.Google Scholar
  31. Mengel K. and Kern H., 1991. Evolution of the petrological and seismic Moho — Implications for the continental crust/mantle boundary. Terra Nova, 4, 109–123.CrossRefGoogle Scholar
  32. Mohorovičić A., 1910. Das Beben Vom 8. ×. 1909. Jahrbuch Meterologie Observatorie Zagrab, 9, 1–63.Google Scholar
  33. Prodehl C., Mueller S. and Haak V., 1995. The European Cenozoic rift system. In: Olsen K.H. (Ed.), Continental Rifts: Evolution, Structure, Tectonics. Developments in Geotectonics, Elsevier, Amsterdam, The Netherlands, 133–212.Google Scholar
  34. Sandmeier K.-J. and Wenzel F., 1990. Lower crustal petrology from wide-angle P-and S-wave measurements in the Black Forest. Tectonophysics, 173, 495–505.CrossRefGoogle Scholar
  35. Tomek Č., Dvořáková V. and Vrána S., 1997. Geological interpretation of the 9HR and 503M seismic profiles in Western Bohemia. In: Vrána S. and Štedrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci., 47, 43–50.Google Scholar
  36. Vavryčuk V., 1993. Crustal anisotropy from local observations of shear-wave splitting in West Bohemia, Czech Republic. Bull. Seismol. Soc. Amer., 83, 1420–1441.Google Scholar
  37. Vavryčuk V. and Boušková A., 2008. S-wave splitting from records of local micro-earthquakes in West Bohemia/Vogtland: an indicator of complex crustal anisotropy. Stud. Geophys. Geod., 52, 631–650.CrossRefGoogle Scholar
  38. Vinnik L.P., 1977. Detection of waves converted from P to S in the mantle. Phys. Earth Planet. Int., 15, 39–45.CrossRefGoogle Scholar
  39. Wilde-Piórko M., Saul J. and Grad M., 2005. Differences in the crustal and uppermost mantle structure of the Bohemian Massif from teleseismic receiver functions. Stud. Geophys. Geod., 49, 85–107.CrossRefGoogle Scholar
  40. Yuan X., Ni. J., Kind R., Mechie J. and Sandvol E., 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J. Geophys. Res., 102(B12), 27491–27500.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2009

Authors and Affiliations

  1. 1.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations