Studia Geophysica et Geodaetica

, Volume 53, Issue 2, pp 215–238 | Cite as

Precursory groundwater level changes in the period of activation of the weak intraplate seismic activity on the NE margin of the Bohemian Massif (central Europe) in 2005

  • Vladimír Stejskal
  • Ladislav Kašpárek
  • Galina N. Kopylova
  • Alexei A. Lyubushin
  • Lumír Skalský


tWe analyse continuous measurements of groundwater level in two deep wells VS-3 and V-28 at the experimental hydro-meteorological station situated on the NE margin of the Bohemian Massif, central Europe, characterized by the weak intraplate seismic activity. The aim of our study is to examine the relationships between changes in the groundwater level and earthquake occurrence. Based on the tidal and barometric response of the water level, we estimated selected elastic parameters of the observed aquifers: the shear modulus G, the Skempton ratio B, the drained matrix compressibility β and the undrained compressibility βu. Using these parameters and assuming the homogeneous poroelastic material, we derived the sensitivity of the wells to the crustal volume strain. During the observation period from November 1998 to December 2005 we detected in the VS-3 well two pre-seismic steps, related to August 10, 2005 (M = 2.4) and October 25, 2005 (M = 3.3) earthquakes. Amplitudes of the recorded precursory changes (+6 cm and +15 cm) are several times higher than the values predicted from the theoretical precursory crustal strain and the strain sensitivity of the well. Therefore, we presume that the observed pre-seismic water level steps can be attributed to heterogeneity of poroelastic material. We consequently propose the hypothesis of the origin of precursory events based on the presumption of a sensitive site, at which the well is situated.

Key words

seismic activity earthquake precursors groundwater crustal deformation Earth tides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bankwitz P., Schneider G., Kämpf H. and Bankwitz E., 2003. Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J. Geodyn., 35, 5–32.CrossRefGoogle Scholar
  2. Biely A., Buday T., Dudek A., Fusán O., Kodym O., Kopecký L., Kuthan M., Malkovský M., Matějka A., Sattran V. and Svoboda J., 1968. Tectonic Map of the Czechoslovakia. ÚÚG, Prague (in Czech).Google Scholar
  3. Chadha R.K., Pandey A.P. and Kümpel H.J., 2003. Search for earthquake precursors in well water levels in a localized seismically active area of reservoir triggered earthquakes in India. Geophys. Res. Lett., 30, doi: 10.1029/2002GL0116694.Google Scholar
  4. Cymerman Z., 2004. Tectonic Map of the Sudetes and the Fore-Sudetic Block 1:200 000. Polish Geological Institute, Warszawa, Poland.Google Scholar
  5. Dehant V., 1987. Tidal parameters for an inelastic Earth. Phys. Earth Planet. Inter., 49, 97–116.CrossRefGoogle Scholar
  6. Dobrovolsky I.P., Zubkov S.I. and Miachkin V.I., 1979. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys., 117, 1025–1044.CrossRefGoogle Scholar
  7. Fischer T. and Horálek J., 2000. Refined locations of the swarm earthquakes in the Nový Kostel focal zone and spatial distribution of the January 1997 swarm in western Bohemia, Czech Republic. Stud. Geophys. Geod., 44, 210–226.CrossRefGoogle Scholar
  8. Fischer T., 2003. The August-December 2000 earthquake swarm in NW Bohemia: the first results based on automatic processing of seismograms. J. Geodyn., 35, 59–81.CrossRefGoogle Scholar
  9. Fischer T. and Michálek J., 2008. Post 2000-Swarm Microearthquake Activity in the Principal Focal Zone of West Bohemia/Vogtland: Space-Time Distribution and Waveform Similarity Analysis. Stud. Geophys. Geod., 52, 493–511.CrossRefGoogle Scholar
  10. Gavrilenko P., Melikadze G., Chelidze T., Gibert D. and Kumsiashvili G., 2000. Permanent water level drop associated with the Spitak Earthquake: observations at Lisi Borehole (Republic of Georgia) and modelling. Geophys. J. Int., 143, 83–98.CrossRefGoogle Scholar
  11. Geissler W.H., Kampf H., Kind R., Brauer K., Klinge K., Plenefisch T., Horálek J., Zedník J. and Nehybka V., 2005. Seismic structure and location of a CO2 source in the upper mantle of the western Eger (Ohř e) Rift, central Europe. Tectonics, 24, Art. No. TC5001.Google Scholar
  12. Grecksch G., Roth F. and Kümpel H.J., 1999. Coseismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions. Geophys. J. Int., 138, 470–478.CrossRefGoogle Scholar
  13. Igarashi G. and Wakita H., 1990. Groundwater radon anomalies associated with earthquakes. Tectonophysics, 180, 237–254.CrossRefGoogle Scholar
  14. Igarashi G. and Wakita H., 1991. Tidal responses and earthquake-related changes in the water level of deep wells. J. Geophys. Res., 96(B3), 4269–4278.CrossRefGoogle Scholar
  15. Jetel J. and Rybářová L., 1979. Mineral Waters of East Bohemian Province. Central Geological Office, Prague, Czech Republic (in Czech).Google Scholar
  16. Kárník V., Schenková Z. and Schenk V., 1984. Earthquake activity in the Bohemian Massif and in the Western Carpathians. Travaux Géophysiques, 29, 9–33.Google Scholar
  17. Kárník V., Michal E. and Molnár A., 1958. Catalog of earthquakes in Czechoslovakia by the year 1956. Travaux Géophysiques, 69, 411–598 (in German).Google Scholar
  18. King C. I., Zhang W. and Zhang Z., 2006. Earthquake-induced groundwater and gas changes. Pure Appl. Geophys., 163, 633–646.CrossRefGoogle Scholar
  19. Kissin I.G., 1982. Earthquakes and Groundwater. Nauka, Moscow, Russia (in Russian).Google Scholar
  20. Kissin I.G. and Grinevsky I.G., 1990. Main features of the hydrogeodynamic earthquake precursors. Tectonophysics, 178, 277–286.CrossRefGoogle Scholar
  21. Kissin I.G., Belikov V.M. and Ishankuliev G.A., 1996. Short-term groundwater level variations in a seismic region as an indicator of the geodynamic regime. Tectonophysics, 265, 313–326.CrossRefGoogle Scholar
  22. Koch U., Heinicke J. and Vossberg M., 2003. Hydrogeological effects of the latest Vogtland-NW Bohemian swarmquake period (August to December 2000). J. Geodyn., 35, 108–123.CrossRefGoogle Scholar
  23. Kontny B., 2004. Is the Sudetic marginal fault still active? Results of the GPS monitoring 1996–2002. Acta Geodynamica et Geomaterialia, 1(3), 35–39.Google Scholar
  24. Kopylova G.N. and Boldina S.V., 2006. Estimation of poro-elastic parameters for a reservoir of groundwater (based on water level observations at YuZ-5 well, Kamchatka). Volcanology and Seismology, 2, 17–28 (in Russian, with English summary).Google Scholar
  25. Krásný J., Buchtele J., Čech S., Hrkal Z., Jakeš P., Kobr M., Mls J., Šantrůček J., Šilar J. and Valečka J., 2002. Hydrogeology of the Police Creataceous basin: Optimisation of groundwater development and protection. Journal of Geological Sciences-Hydrogeology, Engineering Geology, 22, 5–100 (in Czech, with English summary).Google Scholar
  26. Kümpel H.J., 1991. Poroelasticity: parameters reviewed. Geophys. J. Int., 105, 783–799.CrossRefGoogle Scholar
  27. Kümpel H.J., 1992. About the potential of wells to reflect stress variations within inhomogeneous crust. Tectonophysics, 211, 317–336.CrossRefGoogle Scholar
  28. Leonardi V., Arthaud A., Tovmassian A. and Karakhanian A.S., 1997. Relationships between seismic activity and piezometric level changes in the Arax basin (SW Armenia): Attempt at a typology of seismically induced piezometric anomalies. Tectonophysics, 273, 293–316.CrossRefGoogle Scholar
  29. Lorenzetti E. and Tullis T. E., 1989. Geodetic predictions of a strike-slip fault model: implications for intermediate-and short-term earthquake prediction. J. Geophys. Res., 94(B9), 12343–12361.CrossRefGoogle Scholar
  30. Lyubushin A.A. and Latynina A.L., 1994. Compensating meteorological disturbances in strain monitoring. Izv.-Phys. Solid Earth, 29, 292–296.Google Scholar
  31. Lyubushin A.A., 1994. Multidimensional analysis of time series for a geophysical monitoring systems. Izv.-Phys. Solid Earth, 29, 297–301.Google Scholar
  32. Masterlark T., Wang H., Chan L. and Che Y., 1999. Coseismic pore pressure response estimated from tidal band prediction error filtering. Bull. Seismol. Soc. Amer., 89, 1439–1446.Google Scholar
  33. Montgomery D.R. and Manga M., 2003. Streamflow and water well responses to earthquakes. Science, 300(5628), 2047–2049.CrossRefGoogle Scholar
  34. Procházková D., Dudek A., Mísař Z. and Zeman J., 1986. Earthquakes in Europe and their Relation to Basement Structures and Fault Tectonics. Academia, Prague, Czech Republic, 80 pp.Google Scholar
  35. Pertsev B.P., 1959. About the registration of the drift of zero when observing the elastic Earth tides. Izvestiya Akademii Nauk SSSR, Seria Geofyzicheskaya, 4, 547–548 (in Russian).Google Scholar
  36. Quilty E. and Roeloffs E., 1991. Removal of barometric pressure response from water level data. J. Geophys. Res., 96(B6), 10209–10218.CrossRefGoogle Scholar
  37. Rice J.R. and Cleary M.P., 1976. Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys., 14, 227–241.CrossRefGoogle Scholar
  38. Rikitake T., 1975. Earthquake precursors. Bull. Seismol. Soc. Amer., 65, 1133–1162.Google Scholar
  39. Roelofoffs E., 1988. Hydrological precursors of earthquakes: a review. Pure Appl. Geophys., 126, 177–209.CrossRefGoogle Scholar
  40. Roelofoffs E., 1996. Poroelastic techniques in the study of earthquake-related hydrologic phenomena. In: Dmowska R. and Saltzman B. (Eds), Adv. Geophys., 37, 135–195.Google Scholar
  41. Roeloffs E., Schulz-Burford S., Riley F. and Records A., 1989. Hydrologic effects on water level changes associated with episodic fault creep near Parkfield, California. J. Geophys. Res., 94(B9), 12387–12402.CrossRefGoogle Scholar
  42. Roeloffs E. and Quilty E., 1997. Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California earthquake. Pure Appl. Geophys., 149, 21–60.CrossRefGoogle Scholar
  43. Rojstaczer S. and Agnew D.C., 1989. The influence of formation material properties on the response of water levels in wells to Earth tides and atmospheric loading. J. Geophys. Res., 94(B9), 12403–12411.CrossRefGoogle Scholar
  44. Rudnicki J.W., Yin J. and Roeloffs E., 1993. Analysis of water level changes induced by fault creep at Parkfield, California. J. Geophys. Res., 98(B5), 8143–8152.CrossRefGoogle Scholar
  45. Scheck M., Bayer U., Volker O., Lamarche J., Banka D. and Pharaoh T., 2002. The Elbe Fault System in the North Central Europe-a basement controlled zone of crustal weakness. Tectonophysics, 360, 281–299.CrossRefGoogle Scholar
  46. Schenk V., Schenková Z. and Pospíšil L., 1989. Fault system dynamics and seismic activity-examples from the Bohemian Massif and the Western Carpathians. Geophysical Transactions, 35, 101–116.Google Scholar
  47. Stejskal V., Štěpančíková P. and Vilímek V., 2006. Selected geomorphological methods assessing neotectonic evolution of the seismoactive Hronov-Poříčí Fault Zone. Geomorphologica Slovaca, 6, 14–22.Google Scholar
  48. Špaček P., Sýkorová Z., Pazdírková J., Švancara J. and Havír J., 2006. Present-day seismicity of the south-eastern Elbe Fault System (NE Bohemian Massif). Stud. Geophys. Geod., 50, 233–258.CrossRefGoogle Scholar
  49. Tamura Y., 1987. A harmonic development of the tide-generating potential. Marées Terrestres Bulletin d’Informations, 99, 6813–6855.Google Scholar
  50. Tásler R., 1979. Geology of the Czech Part of the Intrasudetic Basin. Academia, Prague, Czech Republic, 292 pp. (in Czech, with English summary).Google Scholar
  51. Tásler R., 1995. Geological Map of the Czech Republic 1:50 000, Sheet 04-31 — Meziměstí. Czech Geological Survey, Prague, Czech Republic (in Czech).Google Scholar
  52. Thomas D., 1988. Geochemical precursors to seismic activity. Pure Appl. Geophys., 126, 241–266.CrossRefGoogle Scholar
  53. Tobyáš V. and Mittag R., 1991. Local magnitude, surface-wave magnitude and seismic energy. Stud. Geophys. Geod., 35, 354–362.CrossRefGoogle Scholar
  54. Vejlupek M. 1990. Geological Map of the Czech Republic 1:50 000, Sheet 04-33-Náchod. Czech Geological Survey, Prague, Czech Republic (in Czech).Google Scholar
  55. Vyskočil P., 1988. The dynamics of the Hronov-Poříčí seismoactive fault. Proceedings of the Research Institute of Geodesy, Topography and Cartography, 17, 93–111.Google Scholar
  56. Wahr J.M., 1981. Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophys. J. R. Astron. Soc., 64, 677–703.Google Scholar
  57. Wang H.F., 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton, New Jersey, USA, 287 pp..Google Scholar
  58. Wenzel H.G., 1993. ETERNA 3.0, Program Manual, Status August 1st, 1993. Geodaetisches Institut, Karlsruhe, Germany.Google Scholar
  59. Woldřich J.N., 1901. Earthquake in the north-eastern Bohemia on January 10, 1901. Transactions of the Czech Academy of Sciences, Series II, 10(25), 1–33 (in Czech).Google Scholar
  60. Zschau J. and Wang R., 1981. Imperfect elasticity in the Earth’s mantle-implications for Earth tides and long period deformations. In: Kuo J.T. (Ed.), Proceedings of the 9th International Symposium on Earth Tides, New York, USA, 605–629.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2009

Authors and Affiliations

  • Vladimír Stejskal
    • 1
  • Ladislav Kašpárek
    • 2
  • Galina N. Kopylova
    • 3
  • Alexei A. Lyubushin
    • 4
  • Lumír Skalský
    • 5
  1. 1.Institute of Rock Structure and MechanicsAcad. Sci. Czech RepublicPraha 8Czech Republic
  2. 2.T.G. Masaryk Water Research InstitutePraha 6Czech Republic
  3. 3.Kamchatkan Branch of Geophysical SurveyRussian Acad. Sci.Petropavlovsk-KamchatskyRussia
  4. 4.Schmidt United Institute of Physics of the EarthRussian Acad. Sci.MoscowRussia
  5. 5.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic

Personalised recommendations