Studia Geophysica et Geodaetica

, Volume 53, Issue 1, pp 99–110 | Cite as

Control volume method for hydromagnetic dynamos in rotating spherical shells: Testing the code against the numerical dynamo benchmark

Article

Abstract

Hydromagnetic dynamos in rotating spherical shells are investigated using the control volume method. We present a validation of our code against the numerical dynamo benchmark. It is successfully benchmarked and we are able to conclude that the control volume method is another numerical method available for numerical modelling of self-consistent dynamos. In addition, the efficiency of our numerical code is tested. Computations provide conclusions that dynamo codes based on the spectral methods are much more efficient than our code based on the control volume method at the study of global fields on small and medium size parallel computers. However, our code could be much more efficient than codes based on the spectral methods on very large parallel computers, especially at the study of turbulence.

Key words

hydromagnetic dynamos control volume method numerical dynamo benchmark efficiency of parallelization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen U.R., Aubert J., Cardin P., Dormy E., Gibbons S., Glatzmaier G.A., Grote E., Honkura Y., Jones C., Kono M., Matsushima M., Sakuraba A., Takahashi F., Tilgner A., Wicht J. and Zhang K., 2001. A numerical dynamo benchmark. Phys. Earth Planet. Inter., 128, 25–34.CrossRefGoogle Scholar
  2. Christensen U.R. and Wicht J., 2007. Numerical dynamo simulations. In: Kono M. (Ed.), Volume 8-Core Dynamics of Schubert G. (Ed.-in-Chief), Treatise on Geophysics, Elsevier, Amsterdam, The Netherlands.Google Scholar
  3. Glatzmaier G.A., 2002. Geodynamo simulations-how realistic are they? Annu. Rev. Earth Planet. Sci., 30, 237–257.CrossRefGoogle Scholar
  4. Glatzmaier G.A., 2005. Planetary and stellar dynamos: challenges for next generation models. In: Soward A.M., Jones C.A., Hughes D.W. and Weiss N.O. (Eds.), Fluid Dynamics and Dynamos in Astrophysics and Geophysics, 331–357, CRC Press, New York, USA.Google Scholar
  5. Harder H. and Hansen U., 2005. A finite-volume solution method for thermal convection and dynamo problems in spherical shells. Geophys. J. Int., 161, 522–532.CrossRefGoogle Scholar
  6. Hejda P. and Reshetnyak M., 2003. Control volume method for the dynamo problem in the sphere with free rotating inner core. Stud. Geophys. Geod., 47, 147–159.CrossRefGoogle Scholar
  7. Hejda P. and Reshetnyak M., 2004. Control volume method for the thermal convection problem in a rotating spherical shell: test on the benchmark solution. Stud. Geophys. Geod., 48, 741–746.CrossRefGoogle Scholar
  8. Jones C.A., 2000. Convection-driven geodynamo models. Phil. Trans. R. Soc. Lond. A, 358, 873–897.CrossRefGoogle Scholar
  9. Kono M. and Roberts P.H., 2002. Recent geodynamo simulations and observations of the geomagnetic field. Rev. Geophys., 40, Art. No. 1013.Google Scholar
  10. Patankar S.V., 1980. Numerical Heat Transfer and Fluid Flow. Taylor and Francis, New York, USAGoogle Scholar
  11. Reshetnyak M. and Steffen B., 2005. A dynamo model in a spherical shell. Numer. Meth. Program., 6, 27–34.Google Scholar
  12. Roberts P.H. and Glatzmaier G.A., 2000. Geodynamo theory and simulations. Rev. Mod. Phys., 72, 1081–1123.CrossRefGoogle Scholar
  13. Šimkanin J., 2008. Control volume method for hydromagnetic dynamos in non-uniformly stratified spherical shells. Contributions to Geophysics and Geodesy, 38, 1–15.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2009

Authors and Affiliations

  1. 1.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic

Personalised recommendations