High resolution mapping of anthropogenic pollution in the Giant Mountains National Park using soil magnetometry

  • A. Kapička
  • E. Petrovský
  • H. Fialová
  • V. Podrázský
  • I. Dvořák


Soil magnetometry was used for detailed mapping of immission load over the territory of the Giant Mountains National Park. This project is a continuation of our previous study, which suggested that low-field magnetic susceptibility of topsoils in this region is controlled by atmospherically deposited anthropogenic ferromagnetic particles. In the present study, we have compiled a map of topsoil magnetic susceptibility on the basis of measurements on more than 460 sites. Elevated values of magnetic susceptibility can be attributed to local sources of pollution, located within and at the margins of the Park. We have identified a group of heavy metals of anthropogenic origin, present in the topsoils, and found a positive correlation between the concentration of Pb and magnetic susceptibility. Our results prove that magnetic mapping is a sensitive, fast and robust method, which can be advantageously applied to regions with relatively low degree of pollution, such as the Giant Mountains National Park.

Key words

soil pollution magnetic mapping environmental monitoring 


  1. Boyko T., Scholger R., Stanjek H. and MAGPROX Team, 2004. Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatibility of in situ measurements. J. Appl. Geophys., 55, 249–259.CrossRefGoogle Scholar
  2. Chaparro M.A.E., Bidegain J.C., Sinito A.M., Gogorza C.S. and Jurado S., 2004. Magnetic studies applied to different environments (soils and stream sediments) from relatively polluted area in Buenos Aires province, Argentina. Environ. Geol., 45, 654–664.CrossRefGoogle Scholar
  3. Chianese D., D’Emilio M., Bavusi M., Lapena V. and Macchiato M., 2006. Magnetic and ground probing radar measurements for soil pollution mapping in the industrial area of Val Basento (Basilicata Region, Southern Italy): a case study. Environ Geol., 46, 389–404.CrossRefGoogle Scholar
  4. Evans M.E. and Heller F., 2003. Environmental Magnetism. Academic Press, San Diego, London, Burlington.Google Scholar
  5. Fiala P., Reininger D. and Samek T., 2008. A survey of forest pollution with heavy metals in the Natural Forest Region (NFR) Moravskoslezske Beskydy with particular attention to Jablunkov Pass. Journal of Forest Science, 54, 64–72.Google Scholar
  6. Fialová H., Maier G., Petrovský E., Kapička A., Boyko T., Scholger R. and MAGPROX Team, 2006. Magnetic properties of soils from sites with different geological and environmental settings. J. Appl. Geophys., 59, 273–283.CrossRefGoogle Scholar
  7. Flanders P.J., 1994. Collection, measurement and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys., 75, 5931–5936.CrossRefGoogle Scholar
  8. Goluchowska B.J., 2001. Some factors affecting an increase in magnetic susceptibility of cement dusts. J. Appl. Geophys., 48, 103–112.CrossRefGoogle Scholar
  9. Hanesch M., Scholger R. and Dekkers M.J., 2001. The application of fuzzy c-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites. Phys. Chem. Earth., 26, 885–891.CrossRefGoogle Scholar
  10. Hanesch M. and Scholger R., 2002. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geol., 42, 857–870.CrossRefGoogle Scholar
  11. Hasnesch M., Maier G. and Scholger R., 2003. Mapping heavy metal distribution by measuring the magnetic susceptibility of soils. J. Phys. IV, 107, 605–608.CrossRefGoogle Scholar
  12. Heller F., Strzyszcz Z. and Magiera T., 1998. Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland. J. Geophys. Res., 103(B8), 767–774.CrossRefGoogle Scholar
  13. Hoffmann V., Knab M. and Appel E., 1999. Magnetic susceptibility mapping of roadside pollution. J. Geochem. Explor., 66, 313–326.CrossRefGoogle Scholar
  14. Hošek J., Schwarz O. and Svoboda T. 2007. Results of ten-year measurements of atmospheric deposition in the Giant Mountains. Opera Concortica, 44, 179–191.Google Scholar
  15. Jamnická G., Bučinová K., Havranová I. and Urban A., 2007. Current state of mineral nutrition and risk elements in a beech ecosystem situated near the aluminium smelter in Žiar nad Hronom, Central Slovakia. Forest Ecol. Manage., 248, 26–35.CrossRefGoogle Scholar
  16. Kapička A., Petrovský E., Ustjak S. and Macháčková K., 1999, Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J. Geochem. Explor., 66, 291–297.CrossRefGoogle Scholar
  17. Kapička A., Jordanova N., Petrovský E. and Ustjak S., 2000. Magnetic stability of power-plant fly ash in different soil solutions. Phys. Chem. Earth (A), 25, 431–436.CrossRefGoogle Scholar
  18. Kapička A., Jordanova N., Petrovský E. and Ustjak S., 2001. Effect of different soil conditions on magnetic parameters of power-plant fly ashes. J. Appl. Geophys., 48, 93–102.CrossRefGoogle Scholar
  19. Kapička A., Jordanova N., Petrovský E. and Podrázský V., 2003. Magnetic study of weakly contaminated forest soils. Water Air Soil Pollut., 148, 31–44.CrossRefGoogle Scholar
  20. Lecoanet H., Lévêque F. and Segura S., 1999. Magnetic susceptibility in environmental applications: comparison of field probes. Phys. Earth Planet. Inter., 115, 191–204.CrossRefGoogle Scholar
  21. Magiera T., Strzyszcz Z., Kapička A., Petrovský E. and MAGPROX Team, 2006. Discimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma, 130, 299–311.CrossRefGoogle Scholar
  22. Maher B.A. and Taylor R.M., 1988, Formation of ultrafine-grained magnetite in soils. Nature, 336, 368–370.CrossRefGoogle Scholar
  23. Maier G., Scholger R. and Schon J., 2006. The influence of soil moisture on magnetic susceptibility measurements. J. Appl. Geophys., 59, 162–175.CrossRefGoogle Scholar
  24. MŽP ČR, 2007. Statistická ročenka životního prostředí České republiky 2006 (Statistical Environmental Yearbook of the Czech Republic 2006). Ministry of Environment of the Czech Republic, Praha (in Czech).Google Scholar
  25. Petříková V.,1990. Výskyt imisí v ovzduší a obsah TK v zemědělských plodinách (Air pollution and heavy metal content in agricultural crops). Rostlinná výroba (Crop Production), 36, 367–378 (in Czech).Google Scholar
  26. Plamínek J., 2007. The Geology. In: Flousek J., Hartmanová O., Štursa J. and Potocki J. (Eds.), The Giant Mts.-Nature, History, Life. Baset, Praha, 83–102 (in Czech).Google Scholar
  27. Petrovský E. and Ellwood B.B., 1999. Magnetic monitoring of air-, land-and water pollution. In: Maher B.A. and Thopson R. (Eds.), Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge, 279–322.Google Scholar
  28. Petrovský E., Kapička A., Jordanova N., Knab M. and Hoffmann V., 2000. Low-field magnetic susceptibility: a proxy method of estimating increased pollution of different environmental systems. Environ. Geol., 39, 312–318.CrossRefGoogle Scholar
  29. Podrázský V., 2001. Heavy metals and microelements content of humus forms in different regions of the Czech Republic. In: Soil Science: Past, Present and Future. Czech University of Life Sciences, Prague, 97 (ISBN 80-213-0800-1).Google Scholar
  30. Podrázský V., Vacek S., Mikeska M. and Boček M., 2007. Status and development of soils in the bilateral biosphere reserve Krkonoše. Opera Concortica, 44, 129–139.Google Scholar
  31. Rychlíková E., 2003. Symos 97, verze 02. Systém modelování stacionárních zdrojů, doplněk k verzi 97 (Symos 97, version 02. System for modelling stationary sources, addendum to version 97) Věstník MŽP, XIII(4), 1–6 (in Czech).Google Scholar
  32. Schibler L., Boyko T., Ferdyn M., Gajda B., Holl S., Jordanova N., Rösler W. and MAGPROX Team, 2002. Topsoil magnetic susceptibility mapping: data reproducibility and compatibility, measurement strategy. Stud. Geophys. Geod., 46, 43–57.CrossRefGoogle Scholar
  33. Schmidt A., Yarnold R., Hill M. and Ashmore M., 2005. Magnetic susceptibility as proxy for heavy metal pollution: a site study. J. Geochem. Explor., 85, 109–117.CrossRefGoogle Scholar
  34. Scholger R., 1998. Heavy metal pollution monitoring by magnetic susceptibility measurements applied to sediments of the river Mur (Styria, Austria). Europ. J. Environ. Eng. Geophys., 3, 25–37.Google Scholar
  35. Spiteri C., Kalinski V., Rösler W., Hoffmann V., Appel E. and MAGPROX Team., 2005. Magnetic screening of pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ. Geol., 49, 1–9.CrossRefGoogle Scholar
  36. Strzyszcz Z., 1999. Heavy metal contamination in mountain soils of Poland as a result of anthropogenic pressure. Biol. Bull., 26, 593–605.Google Scholar
  37. Strzyszcz Z., Magiera T. and Heller F., 1996. The influence of industrial immisions on the magnetic susceptibility of soils in Upper Silesia. Stud. Geophys. Geod., 40, 276–286.CrossRefGoogle Scholar
  38. Strzyszcz Z. and Magiera T., 1998. Magnetic susceptibility and heavy metals contamination in soils of Southern Poland. Phys. Chem. Earth, 23, 1128–1131.CrossRefGoogle Scholar
  39. Wang X.S. and Qin Y., 2005. Correlation between magnetic susceptibility and heavy metals in urban topsoil: a case study from the city of Xuzhou, China. Environ. Geol., 49, 10–18.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2008

Authors and Affiliations

  • A. Kapička
    • 1
  • E. Petrovský
    • 1
  • H. Fialová
    • 1
  • V. Podrázský
    • 2
  • I. Dvořák
    • 3
  1. 1.Institute of Geophysics ASCR v.v.i.Praha 4Czech Republic
  2. 2.Faculty of Forestry and Wood SciencesCzech University of Life SciencesPraha 6Czech Republic
  3. 3.Institute of Hydrodynamics ASCR v.v.i.Praha 6Czech Republic

Personalised recommendations