Studia Geophysica et Geodaetica

, Volume 52, Issue 2, pp 211–223 | Cite as

Identification of stable remanence carriers through a magneto-impedance scanning magnetic microscope

Article

Abstract

To identify the stable remanence carrier in rock samples, we conducted magnetic microscopic observations combined with conventional stepwise demagnetization experiments. The instrument, which employs an amorphous wire-based magneto-impedance sensor (30 µm diameter, 5 mm length), can document magnetic anomalies (vertical component) of the millimeter to sub-millimeter-thick rock samples with a resolution of 500 µm. Our new technique allows identification of the sources of both stable and unstable remanence components in meteorite and shocked granite samples. However, stray magnetic fields from the sensor magnetize the magnetic minerals in the sample and makes serious artifacts on the magnetic images. Although the artifacts of the induced magnetization should be solved, this new corroborative technique leads to a microscopic discrimination of stable paleomagnetic records from terrestrial and extraterrestrial materials.

Key words

magnetic microscope MI sensor remanent magnetization demagnetization extraterrestrial magnetism chondrites Vredefort granite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baudenbacher F., Peters N.T. and Wikswo J.P. Jr., 2002. High resolution low-temperature superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures. Rev. Sci. Instrum., 73, 1247–1254.CrossRefGoogle Scholar
  2. Baudenbacher F., Fong L.E., Holzer J.R. and Radparvar M., 2003. Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples. Appl. Phys. Lett., 82, 3487–3489.CrossRefGoogle Scholar
  3. Carporzen L., Gilder S.A. and Hart R. J.,2005. Paleomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature, 435, 198–201.CrossRefGoogle Scholar
  4. Clark D.A. and Emerson D.W. 1991. Notes on rock magnetic characteristics in applied geophysical studies. Expl. Geophys., 22, 547–555.CrossRefGoogle Scholar
  5. Collingwood J. and Dobson J., 2006. Mapping and characterization of iron compounds in Alzheimer’s tissue. J. Alzheimers Dis., 10, 215–222.Google Scholar
  6. Enomoto Y. and Zheng Z. 1998. Possible evidences of earthquake lightning accompanying the 1995 Kobe earthquake inferred from the Nojima fault gouge. Geophys. Res. Lett., 25, 2721–2724.CrossRefGoogle Scholar
  7. Fong L.E., Holzer J.R., McBride K.K., Lima E.A., Baudenbacher F.J. and Radparvar M., 2005. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications. Rev. Sci. Instrum., 76, 053703, doi:10.1063/1.1884025.Google Scholar
  8. Fukuchi T., 2003. Strong ferrimagnetic resonance signal and magnetic susceptibility of the Nojima pseudotachylyte in Japan and their implication for coseismic electromagnetic changes. J. Geophys. Res., 108, 2312, doi:10.1029/2002JB002007.CrossRefGoogle Scholar
  9. Gattacceca J., Boustie M., Weiss B.P., Rochette P., Lima E.A., Fong L.E. and Baudenbacher F.J., 2006. Investigating impact demagnetization through laser impacts and SQUID microscopy, Geology, 34, 333–336.CrossRefGoogle Scholar
  10. Kanno T., Mohri K., Yagi T., Uchiyama T. and Shen L.P., 1997. Amorphous wire MI micro sensor using C-MOS IC multivibrator. IEEE Trans. Magn., 22, 3358–3360.CrossRefGoogle Scholar
  11. Mohri K., 1994. Application of amorphous magnetic wires to computer peripherals. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 185, 141–145. doi:10.1016/0921-5093(94)90937-7.Google Scholar
  12. Mohri K., Bushida K., Noda M., Yoshida H., Panina L.V. and Uchiyama T., 1995. Magneto-impedance element. IEEE Trans. Magn., 31, 2455–2460.CrossRefGoogle Scholar
  13. Mohri K., Uchiyama T., Shen L.P., Cai C.M. and Panina L.V., 2001. Sensitive micro magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls. Sens. Actuator A-Phys., 91, 85–90.CrossRefGoogle Scholar
  14. Nagata T. and Funaki M., 1983. Paleointensity of the Allende carbonaceous chondrite. Memoires of National Institute of Polar Research, 30, 403–434.Google Scholar
  15. Morden S.J. and Collinson D.W., 1992. The implications of the magnetism of ordinary chondrite meteorites. Earth Planet. Sci. Lett., 109, 185–204.CrossRefGoogle Scholar
  16. Nakamura N., Hirose T. and Borradaile G.J., 2002. Laboratory verification of submicron magnetite production in pseudotachylytes: relevance for paleointensity studies. Earth Planet. Sci. Lett., 201, 13–18.CrossRefGoogle Scholar
  17. Panina L.V., Mohri K., Bushida K. and Noda M., 1994. Giant magneto-impedance and magneto-inductive effects in amorphous alloys. J. Appl. Phys., 76, 6198–6203.CrossRefGoogle Scholar
  18. Panina L.V. and Mohri K., 1994. Magneto-impedance effect in amorphous wires. Appl. Phys. lett., 65, 1189–1191.CrossRefGoogle Scholar
  19. Gattacceca J., Rochette P. and Bourot-Denise M., 2003. Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite. Phys. Earth Planet. Inter., 140, 343–358CrossRefGoogle Scholar
  20. Russell S.S., Folco L., Grady M.M., Zolensky M.E., Jones R., Righter K., Zipfel J. and Grossman J.N., 2004. The meteoritical bulletin, No.88, 2004 July. Meteorit. Planet. Sci., 39, A215–A272.CrossRefGoogle Scholar
  21. Sugiura N., Lanoix L. and Strangway D.W., 1979. Magnetic fields of the solar nebular as recorded in chondrules from the Allende meteorite. Phys. Earth Planet. Inter., 20, 342–349.CrossRefGoogle Scholar
  22. Sugiura N. and Strangway D.W., 1982, Magnetic properties of low-petrologic grade noncarbonaceous chondrites. Memoires of National Institute of Polar Research, 25, 260–280.Google Scholar
  23. Uehara M. and Nakamura N., 2006. Experimental constraints on magnetic stability of chondrules and the paleomagnetic siginificance of dusty olivines. Earth Planet. Sci. Lett., 250, 292–305.CrossRefGoogle Scholar
  24. Uehara M. and Nakamura N., 2007. A novel scanning magnetic microscope system utilizing magneto-impedance (MI) sensor for non-destructive diagnostic tool of geological samples. Review of Scientific Instruments. Rev. Sci. Instrum., 78, doi:10.1063/1.2722402.Google Scholar
  25. Weiss B.P., Kirschvink J.L., Baudenbacher F.J., Vali H., Peters N.T., Macdonald F.A. and Wikswo J.P., 2000. A low temperature transfer of ALH84001 from Mars to Earth. Science, 290, 791–795.CrossRefGoogle Scholar
  26. Weiss B.P., Vali H., Baudenbacher F.J., Kirschvink J.L., Stewart S.T. and Shuster D.L., 2002. Records of an ancient Martian magnetic field in ALH84001. Earth Planet. Sci. Lett., 201, 449–463.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2008

Authors and Affiliations

  1. 1.Division of GeoEnvironmental ScienceTohoku University, AobaSendaiJapan

Personalised recommendations