Studia Geophysica et Geodaetica

, Volume 51, Issue 1, pp 165–184 | Cite as

Tomography and velocity structure of the crust and uppermost mantle in southeastern Europe obtained from surface wave analysis

  • R. Raykova
  • S. Nikolova


A set of two hundred shear-wave velocity models of the crust and uppermost mantle in southeast Europe is determined by application of a sequence of methods for surface-waves analysis. Group velocities for about 350 paths have been obtained after analysis of more than 600 broadband waveform records. Two-dimensional surface-wave tomography is applied to the group-velocity measurements at selected periods and after regionalisation, two sets of local dispersion curves (for Rayleigh and Love waves) are constructed in the period range 8–40 s. The shear-wave velocity models are derived by applying non-linear iterative inversion of local dispersion curves for grid cells predetermined by the resolving power of data. The period range of observations limits the velocity models to depths of 70 km in accordance to the penetration of the surface waves with a maximum period of 40 s. Maps of the Moho boundary depth, velocity distribution above and below Moho boundary, as well as velocity distribution at different depths are constructed. Well-known geomorphologic units (e.g. the Pannonian basin, southeastern Carpathians, Dinarides, Hellenides, Rodophean massif, Aegean Sea, western Turkey) are delineated in the obtained models. Specific patterns in the velocity models characterise the southeast Carpathians and adjacent areas, coast of Albania, Adriatic coast of southern Italy and the southern coast of the Black Sea. The models obtained in this study for the western Black Sea basin shows the presence of layers with shear-wave velocities of 3.5 km/s–3.7 km/s in the crust and thus do not support the hypothesis of existence of oceanic structure in this region.


surface waves group velocity tomography inversion shear-wave velocity structure southeastern Europe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belousov V.V., Volvovsky B.S., Arkhipov I.V., Buryanova B.V., Evsyukov Y.D., Goncharov V.P., Gordienco V.V., Ismagilov D.F., Kislov G.K., Kogan L.I., Kondyurin A.V., Koslov V.N., Lebedev L.I., Lokholatnikov V.M., Malovitsky Y.P., Moskalenko V.N., Neporochnov Y.P., Otisty B.K., Rusakov O.M., Shimkus K.M., Shlezinger A.E., Sochelnikov V.V., Sollogub V.B., Solovyev V.D., Starostenko V.I., Starovoitov A.F., Terekhov A.A., Volvovsky I.S., Zhigunov A.S. and Zolotarev V.G., 1988. Structure and evolution of the earth’s crust and upper mantle of the Black Sea. Boll. Geofis. Teor. Appl., 30, 109–196.Google Scholar
  2. Calcagnile G., D’Ingeo F., Farrugia P. and Panza G.F., 1982. The lithosphere in the central-eastern Mediterranean area. Pure Appl. Geophys., 120, 389–406.CrossRefGoogle Scholar
  3. Calcagnile G., Mascia U., Del Gaudio V. and Panza G.F., 1984. Deep structure of southeastern Europe from Rayleigh waves. Tectonophysics, 110, 189–200.CrossRefGoogle Scholar
  4. Dachev C., 1980. Geodynamic problems in Balkan Peninsula in the frame of regional geophysical data. In: I. Nachev and R. Ivanov (Eds.), Geodynamic of Balkans. Technika, Sofia, Bulgaria, 9–25 (in Bulgarian).Google Scholar
  5. Dachev C., 1988. Structure of the Earth’s Crust in Bulgaria. Technika, Sofia, Bulgaria (in Bulgarian).Google Scholar
  6. Ditmar P.G. and Yanovskaya T.B., 1987. A generalization of the Backus-Gilbert method for estimation of lateral variations of surface wave velocity. Izv. AN SSSR, Phys. Solid Earth, 23, 470–477.Google Scholar
  7. GEOFON, 2000. GeoForschungsNetz, GeoforschungsZentrum, Potsdam, Germany (
  8. Gobarenko V., Nikolova S. and Yanovskaya T.B., 1987. 2-D and 3-D velocity patterns in southeastern Europe, Asia Minor and the eastern Mediterranean from seismological data. Geophys. J. R. astr. Soc., 90, 473–484.Google Scholar
  9. Hauser F., Raileanu V., Fielitz W., Bala A., Prodehl C., Polonik G. and Schulze A., 2001. VRANCEA99 — the crustal structure beneath the southeastern Carpathians and the Moesian Platform from a seismic refraction profile in Romania. Tectonophysics, 340, 233–256.CrossRefGoogle Scholar
  10. Herrmann R.B. (Ed.), 1991. Surface Wave Inversion Program. Saint Louis University, Saint Louis.Google Scholar
  11. Holvand I. and Husebye E., 1982. Upper mantle heterogeneities beneath Eastern Europe. Tectonophysics, 90, 137–151.CrossRefGoogle Scholar
  12. Hurtig E., Čermák V., Haenel R. and Zui V. (Eds.), 1991. Geothermal Atlas of Europe. Hermann Haack Verlag, Gotha.Google Scholar
  13. IRIS, 2000. Incorporated Research Institutions for Seismology, Washington, USA (
  14. ISC, 2000. International Seismological Centre, Bergshire, UK (
  15. Kalogeras I. and Burton P., 1996. Shear-wave velocity models from Rayleigh-wave dispersion in the broader Aegean area. Geophys. J. Int., 125, 679–695.Google Scholar
  16. Karagianni E., Panagiotopoulos D., Panza G., Suhadolc P., Papazachos C., Papazachos B., Kiratzi A., Hatzfeld D., Makropoulos K., Priestley K. and Vuan A., 2002. Rayleigh wave group velocity tomography in the Aegean area. Tectonophysics, 358, 187–209.CrossRefGoogle Scholar
  17. Kennett B.L.N. (Ed.), 1991. IASPEI 1991 Seismological Tables. Research School of Earth Sciences, Australian National University, Canberra, Australia.Google Scholar
  18. Laske G. and Masters G., 1997. A global digital maps of sediment thickness. EOS Trans. AGU, 78, F483 ( Scholar
  19. Levshin A.L., Yanovskaya T.B., Lander A.V., Bukchin B.G., Barmin M.P., Ratnikova L.I. and Its E.N., 1989. Surface waves in vertically inhomogeneous media. In: V.I. Keilis-Borok (Ed.), Surface Seismic Waves in Laterally Inhomogeneous Earth. Kluiwer Publ. House, Dordrecht/Boston/London, 131–182.Google Scholar
  20. Marquering H. and Snieder R., 1996. Shear-wave velocity structure beneath Europe, the northeastern Atlantic and western Asia from waveform inversions including surface — wave mode coupling. Geophys. J. Int., 127, 283–304.Google Scholar
  21. Martin M., Ritter J.R.R. and the CALIXTO Working Group, 2005. High-resolution teleseismic body-wave tomography beneath SE Romania — I. Implication for three-dimensional versus one dimensional crustal correction strategies with a new crustal velocity models. Geophys. J. Int., 162, 448–460.CrossRefGoogle Scholar
  22. McClusky S. et al., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res., 105, 5695–5719.CrossRefGoogle Scholar
  23. MEDNET, 2000. Mediterranean Network, Rome, Italy (
  24. Mindevalli O.Y. and Mitchell B.J., 1989. Crustal structure and possible anisotropy in Turkey from seismic surface-wave dispersion. Geophys. J. Int., 98, 93–106.Google Scholar
  25. NEIC, 2000. National Earthquake Information Centre, Washington, USA (
  26. Nemcok M., Pospisil L., Lexa J. and Donelick R.A., 1998. Tertiary subduction and slab break-off model of the Carpathian-Pannonian region. Tectonophysics, 295, 307–340.CrossRefGoogle Scholar
  27. NGDC, 2003. National Geophysical Data Center, Washington, USA (
  28. Nicolich R. and Dal Piaz G.V., 1988. Isobate della Moho. In: P. Scandone (Ed.), Structural Model of Italy. Progetto Finalizzato Geodinamica, CNR, Roma.Google Scholar
  29. Novotný O., Zahradník J. and Tselentis G.-A., 2001. Northwestern Turkey earthquakes and the crustal structure inferred from surface waves observed in Western Greece. Bull. Seismol. Soc. Amer., 91, 875–879.CrossRefGoogle Scholar
  30. Panza G.F. and Pontevivo A., 2004. The Calabrian Arc: a detailed structural model of the lithosphere-asthenosphere system. Rendiconti Accademia Nazionale della Scienze detta dei XL, Memorie Scienza Fisiche e Naturali, 2, 51–88.Google Scholar
  31. Panza G.F., Pontevivo A., Chimera G., Raykova R. and Aoudia A., 2003. The lithosphere-astenosphere: Italy and surroundings. Episodes, 26, 169–174.Google Scholar
  32. Papazachos B., 1969. Phase velocities of Rayleigh waves in southeastern Europe and eastern Mediterranean Sea. Pure Appl. Geophys., 75, 47–55.CrossRefGoogle Scholar
  33. Piromallo C. and Morelli A., 2003. P wave tomography of the mantle under the Alpine-Mediterranean area. J. Geophys. Res., 108, 2065.CrossRefGoogle Scholar
  34. Raileanu V., Diaconescu C. and Radulescu F., 1994. Characteristics of Romanian lithosphere from deep seismic reflection profiling. Tectonophysics, 239, 165–185.CrossRefGoogle Scholar
  35. Raykova R., 2005. Structure of the Earth’s Crust and Upper Mantle in Southeastern Europe from Surface Waves. PhD thesis, Geophysical Institute of BAS, Sofia, Bulgaria.Google Scholar
  36. Raykova R. and Nikolova S., 2003. Anisotropy in the Earth’s Crust and the Uppermost Mantle in the Southeastern Europe Obtained from Rayleigh and Love Surface Waves. J. Appl. Geophys., 54, 247–256.CrossRefGoogle Scholar
  37. Raykova R. and Panza G., 2006. Surface waves tomography and non-linear inversion in the southeast Carpathians. Phys. Earth Planet. Inter., 157, 164–180.CrossRefGoogle Scholar
  38. Rizhikova S. and Petkov I., 1977. Structure of the Earth’s crust in the region of Black Sea by dispersion of the group velocities of Rayleigh and Love waves. Geophys. Symp. AN SSSR, 80, 24–32 (in Russian).Google Scholar
  39. Snieder R., 1988. Large-scale waveform inversions of surface waves for lateral heterogeneity. 2. Application to surface waves in Europe and the Mediterranean. J. Geophys. Res., 93, 12067–12080.Google Scholar
  40. Sollogub G., Guterch A. and Prosen D. (Eds.), 1980. Structure of the Earth’s Crust in Central and East Europe by Geophysical Data. Naukova Dumka, Kiev, Ukraine (in Russian).Google Scholar
  41. Spakman W., 1991. Delay-time tomography of the upper mantle below Europe, the Mediterranean, and Asia Minor. Geophys. J. Int., 107, 309–332.Google Scholar
  42. Van der Meijde M., van der Lee S. and Giardini D., 2003. Crustal structure beneath broad-band seismic stations in the Mediterranean region. Geophys. J. Int., 152, 729–739.CrossRefGoogle Scholar
  43. Villasenor A., Ritzwoller M.H., Levshin A.L., Barmin M.P., Engdahl E.R., Spakman W. and Trampert J., 2001. Shear velocity structure of Central Eurasia from inversion of surface wave velocities. Phys. Earth Planet. Inter., 123, 169–184.CrossRefGoogle Scholar
  44. Yanovskaya T.B., 1997. Resolution estimation in the problems of seismic ray tomography. Izv. Phys. Solid Earth, 33, 762–765.Google Scholar
  45. Yanovskaya T.B., 2001. Development of methods for surface-wave tomography based on Backus-Gilbert approach. In: V. Keilis-Borok and G.M. Molchan (Eds.), Computational Seismology, 32, 11–26.Google Scholar
  46. Yanovskaya T.B. and Nikolova S.B., 1984. Group velocity patterns of Rayleigh and Love surface waves in Southeastern Europe and Asia Minor. Bulg. Geophys. J., 10, 83–92.Google Scholar
  47. Yanovskaya T.B. and Ditmar P.G., 1990. Smoothness criteria in surface-wave tomography. Geophys. J. Int., 102, 63–72.Google Scholar
  48. Yanovskaya T., Kizima E. and Antonova L., 1998. Structure of the crust in the Black Sea and adjoining regions from surface wave data. J. Seismol., 2, 303–316.CrossRefGoogle Scholar

Copyright information

© StudiaGeo s.r.o. 2007

Authors and Affiliations

  • R. Raykova
    • 1
    • 2
  • S. Nikolova
    • 1
  1. 1.Geophysical Institute of BASAcad. G. Bonchev str.SofiaBulgaria
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia, sede di BolognaBolognaItaly

Personalised recommendations