Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Gaussian beams in inhomogeneous media: A review


The paper outlines the most important results of the paraxial complex geometrical optics (CGO) in respect to Gaussian beams diffraction in the smooth inhomogeneous media and discusses interrelations between CGO and other asymptotic methods, which reduce the problem of Gaussian beam diffraction to the solution of ordinary differential equations, namely: (i) Babich’s method, which deals with the abridged parabolic equation and describes diffraction of the Gaussian beams; (ii) complex form of the dynamic ray tracing method, which generalizes paraxial ray approximation on Gaussian beams and (iii) paraxial WKB approximation by Pereverzev, which gives the results, quite close to those of Babich’s method. For Gaussian beams all the methods under consideration lead to the similar ordinary differential equations, which are complex-valued nonlinear Riccati equation and related system of complex-valued linear equations of paraxial ray approximation. It is pointed out that Babich’s method provides diffraction substantiation both for the paraxial CGO and for complex-valued dynamic ray tracing method. It is emphasized also that the latter two methods are conceptually equivalent to each other, operate with the equivalent equations and in fact are twins, though they differ by names.

The paper illustrates abilities of the paraxial CGO method by two available analytical solutions: Gaussian beam diffraction in the homogeneous and in the lens-like media, and by the numerical example: Gaussian beam reflection from a plane-layered medium.

This is a preview of subscription content, log in to check access.


  1. Arnaud J.A., 1971. Mode coupling in first-order optics. J. Opt. Soc. Am., 61, 751–758.

  2. Arnaud J.A., 1973. Hamiltonian theory of beam mode propagation. In: E. Wolf (Ed.), Progress in Optics, 11, North-Holland, Amsterdam-London, 247–304.

  3. Arnaud J.A., 1976. Beams and Fiber Optics. Academic Press, New York.

  4. Babich V.M., 1956. Ray method of computation of the intensity of wave fronts. Dokl. Akad. Nauk SSSR, 110(3), 355–357 (in Russian).

  5. Babich V.M., 1968. Eigenfunctions, concentrated in the vicinity of closed geodesic. In: V.M. Babich (Ed.), Mathematical Problems in Wave Propagation Theory. Seminars in Mathematics, 9, V.A. Steklov Mathematical Institute, Nauka, Leningrad, 15–63 (in Russian).

  6. Babich V.M. and Lazutkin V.F., 1968. Eigenfunctions, concentrated near closed geodesic. In: M.S. Birman (Ed.), Topics in Mathematical Physics, 2, 9–18 (translated by Consultant Bureau, New York, 1968).

  7. Babich V.M. and Buldyrev V.S., 1972. Asymptotic Methods in Short-Wavelength Diffraction Problems: The Model Problem Method. Nauka, Moscow (in Russian).

  8. Babich V.M. and Buldyrev V.S., 1990. Short-Wavelength Diffraction Theory: Asymptotic Methods. Springer Verlag, Berlin.

  9. Babich V.M. and Kirpichnikova N.J., 1974. Boundary Layer Method in Diffraction Problems. Leningrad University Press, Leningrad (in Russian).

  10. Babich V.M. and Kirpichnikova N.J., 1980. Boundary Layer Method in Diffraction Problems. Springer Verlag, Berlin.

  11. Babich V.M. and Popov M.M., 1990. Gaussian beam summation method. Radiophysics and Quantum Electronics, 32, 1063–1081.

  12. Babich V.M. and Ulin V.V., 1984. Complex space-time ray method and “quasiphotons”. J. Sov. Math., 24, 269–273.

  13. Belonosova A.V., Tadzimukhamedova S.S. and Alekseev A.S., 1967. Computation of travel-time curvesand geometrical spreading in inhomogeneous media. In: A.S. Alekseev (Ed.), Certain Methods and Algorithms in the Interpretation of Geophysical Data. Nauka, Moscow, 124–136 (in Russian).

  14. Berczynski P. and Kravtsov Yu.A., 2004. Theory for Gaussian beam diffraction in 2D inhomogeneous medium, based on the eikonal form of complex geometrical optics. Phys. Lett. A, 331, 265–268.

  15. Berczynski P. and Kravtsov Yu.A., 2005. Gaussian beam diffraction in inhomogeneous media: solution in the the frame of complex geometrical optics. Proceedings SPIE, 5949, 280–292.

  16. Berczynski P., Bliokh K.Yu., Kravtsov Yu.A. and Stateczny A., 2006. Diffraction of Gaussian beam in 3D smoothly inhomogeneous media: eikonal-based complex geometrical optics approach. J. Opt. Soc. Am. A., 23, 1442–1451.

  17. Born M. and Wolf E., 1980. Principles of Optics, 6th Ed. Pergamon Press, Oxford.

  18. Bornatici M. and Maj O., 2003. Wave beam propagation in a weakly inhomogeneous isotropic medium: paraxial approximation and beyond. Plasma Phys. Control. Fusion, 45, 707–719.

  19. Bouche D., Molinet P. and Mittra R., 1997. Asymptotic Methods in Electromagnetism. Springer Verlag, Berlin, Heidelberg.

  20. Casperson L.W., 1973. Gaussian light beams in inhomogeneous media. Appl. Optics, 12, 2434–2441.

  21. Chernikov N.A., 1968. System with a Hamiltonian in the form of a time dependent quadratic form of x and p. Sov. Phys. JETP, 26, 603–608.

  22. Červený V., 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media. Geophys. J. R. astr. Soc., 29, 1–13.

  23. Červený V., 1981a. Seismic Wave Fields in Structurally Complicated Media. Lecture Notes, Rijksununiversiteit Utrecht, Veining-Meinesz Laboratory, Utrecht.

  24. Červený V., 1981b. Dynamic ray tracing in 2-D media. Stanford Exploration Project, Rep. No.28, Department of Geophysics, Stanford University, 21–30.

  25. Červený V., 1981c. Determination of the second derivatives of travel-time field by dynamic ray tracing. Stanford Exploration Project, Rep. No.28, Department of Geophysics, Stanford University, 31–38.

  26. Červený V., 1981d. Ray tracing in a vicinity of a central ray. Stanford Exploration Project, Rep. No.28, Department of Geophysics, Stanford University, 39–48.

  27. Červený V., 1981e. Computation of geometrical spreading by dynamic ray tracing. Stanford Exploration Project, Rep. No.28, Department of Geophysics, Stanford University, 49–59.

  28. Červený V., 1981f. Dynamic ray tracing across curved interfaces. Stanford Exploration Project, Rep. No.28, Department of Geophysics, Stanford University, 61–73.

  29. Červený V., 1983. Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method. Geophys. J. R. astr. Soc., 73, 389–426.

  30. Červený V., 1985. Gaussian beam synthetic seismograms. J. Geophys., 58, 44–72.

  31. Červený V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge.

  32. Červený V., Molotkov I.A. and Pšenčik I., 1977. Ray Method in Seismology. Charles University, Prague.

  33. Červený V. and Hron F., 1980. The ray series method and dynamic ray tracing system for three-dimensional inhomogeneous media. Bull. Seismol. Soc. Amer., 70, 47–77.

  34. Červený V., Popov M.M. and Pšenčik I., 1982. Computation of wave fields in inhomogeneous media — Gaussian beam approach. Geophys. J. R. astr. Soc., 70, 109–128.

  35. Červený V. and Klimeš L., 1984. Synthetic body wave seismograms for three-dimensional laterally varying media. Geophys. J.R. astr. Soc., 79, 119–133.

  36. Červený V., Klimeš L. and Pšenčik I., 1984. Paraxial ray approximations in the computation of seismic wavefields in inhomogeneous media. Geophys. J.R. astr. Soc., 79, 89–104.

  37. Chapman S.J., Lawry J.M., Ockendon J.R. and Tew R.H., 1999. On the theory of complex rays. SIAM Rev., 41, 417–509.

  38. Choudhary S. and Felsen L.B., 1973. Asymptotic theory for inhomogeneous. Waves. IEEE Trans. Antennas Propag., 21, 827–842.

  39. Choudhary S. and Felsen L.B., 1974. Analysis of Gaussian beams propagation and diffraction by inhomogeneous wave tracking. Proc. IEEE, 62, 1530–1542.

  40. Deschamps G.A., 1971. Gaussian beam as a bundle of complex rays. Electron. Lett., 7, 684–685.

  41. Deschamps G.A. and Mast P.E., 1964. Beam tracing and applications. Proc. Symp. Quasi-Optics, Polytechnic Press, New York, 379–395.

  42. Egorchenkov R.A. and Kravtsov Yu.A., 2001 Complex ray-tracing algorithm with application to optical problems. J. Opt. Soc. Am. A, 18, 133–140.

  43. Fock V.A., 1965. Electromagnetic Diffraction and Propagation Problems. Pergamon Press, New York.

  44. Fox J. (Ed.), 1964. Quasi-Optics. Polytechnic Press, Brooklyn, N.Y.

  45. Hanyga, A., 1986. Gaussian beams in anisotropic media. Geophys. J. R. astr.Soc., 85, 473–503.

  46. Heyman E. and Felsen L.B., 2001. Gaussian beam and pulsed-beam dynamics: complex source and complex spectrum formulations within and beyond paraxial asymptotics. J. Opt. Soc. Am. A, 18, 1588–1611.

  47. Hubral P., 1979. A wave front curvature approach to computing ray amplitudes in inhomogeneous media with curved interfaces. Stud. Geophys. Geod., 23, 131–137.

  48. Hubral P., 1980. Wavefront curvatures in three-dimensional laterally inhomogeneous media with curved interfaces. Geophysics, 45, 905–913.

  49. Kachalov A.P., 2005. Gaussian beams, Hamilton-Jacobi equations, and Finsler geometry. J. Math. Sci., 127, 2374–2388.

  50. Kachalov A.P. and Popov M.M., 1981. The application of the Gaussian beams summation method to the computation of wave fields in the high frequency approximation. Dokl. Akad. Nauk SSSR, 258(5), 1097–1100 (in Russian).

  51. Karal F.C. and Keller J.B., 1959. Elastic wave propagation in homogeneous and inhomogeneous media. J. Acoust. Soc. Am., 31, 694–705.

  52. Keller J.B. and Streifer W., 1971. Complex rays with an application to Gaussian beams. J. Opt. Soc. Am., 61, 40–43.

  53. Kirpichnikova N.J., 1971. Construction of solution concentrated close to rays for the equations of elasticity theory in an inhomogeneous isotropic space. In: Matematical Problems of Theory of Diffraction and Propagation of Waves, 1, 103–113, Nauka, Leningrad (in Russian).

  54. Klimeš L., 1983. Hermite-Gaussian beams in inhomogeneous elastic media. Stud. Geophys. Geod., 27, 354–365.

  55. Klimeš L., 1984a. Expansion of a high-frequency time-harmonic wavefield given on an initial surface into Gaussian beams. Geophys. J. R. Astr. Soc., 79, 105–118.

  56. Klimeš L., 1984b. The relation between Gaussian beams and Maslov asymptotic theory. Stud. Geophys. Geod., 28, 237–247.

  57. Klimeš L., 1989a. Optimization of the shape of Gaussian beams of a fixed lenght. Stud. Geophys. Geod., 33, 146–163.

  58. Klimeš L., 1989b. Gaussian packets in the computation of seismic wavefields, Geophys. J. Int., 99, 421–433.

  59. Klimeš L., 2002. Second-order and higher-order perturbations of travel time in isotropic and anisotropic media. Stud. Geophys. Geod., 46, 213–248.

  60. Klimeš L., 2004. Notes on summation of Gaussian beams and packets. In: Seismic Waves in Complex 3-D Structures, Report 14, 55–70. Dept. Geophys., Charles Univ., Prague (http://sw3d.mff.cuni.cz).

  61. Kogelnik H., 1965. On the propagation of Gaussian beams of light through lens-like media including those with a loss or gain variation. Appl. Optics, 4, 1562–1569.

  62. Kravtsov Yu.A., 1967. Complex rays and complex caustics. Radiophysics and Quantum Electronics, 10(9–10), 719–730.

  63. Kravtsov Yu.A., 1968. Two new asymptotic methods of the wave propagation theory in inhomogeneous media. Sov. Phys.-Acoust., 14(1), 1–19.

  64. Kravtsov Yu.A., 1988. Rays and caustics as physical objects. In: E. Wolf (Ed.), Progress in Optics, 26, 227–348. North Holland, Amsterdam.

  65. Kravtsov Yu.A., 2005. Geometrical Optics in Engineering Physics. Alpha Science, London.

  66. Kravtsov Yu.A. and Berczynski P., 2004. Description of the 2D Gaussian beam diffraction in a free space in frame of eikonal-based complex geometrical optics. Wave Motion, 40, 23–27.

  67. Kravtsov Yu.A., Forbes G.W. and Asatryan A.A., 1999. Theory and applications of complex rays. In: E. Wolf (Ed.), Progress in Optics, 26, 3–62. North Holland, Amsterdam.

  68. Kravtsov Yu.A. and Orlov Yu.I., 1990. Geometrical Optics of Inhomogeneous Media. Springer Verlag, Berlin, Heidelberg.

  69. Kravtsov Yu.A. and Orlov Yu.I., 1993. Caustics, Catastrophes and Wave Fields. Springer Verlag, Berlin.

  70. Kravtsov Yu.A. and Orlov Yu.I., 1997. Caustics, Catastrophes and Wave Fields (2nd Edit.). Springer Verlag, Berlin.

  71. Landau L.D. and Lifshits, 1975. Theoretical Physics VI, Hydrodynamics. Pergamon Press, Oxford.

  72. Levin M.L. and Rytov S.M., 1956. On transition to geometrical approximation in the theory of elasticity. Akust. Zhurnal, 2(2), 173–176 (in Russian).

  73. Leontovich M.A. and Fock V.A., 1946a. Solution of the problem of electromagnetic waves propagation along the Earth’s surface using parabolic equation method. ZETF, 16, 557–573 (in Russian).

  74. Leontovich M.A. and Fock V.A., 1946b. Solution of the problem of electromagnetic waves propagation along the Earth’s surface using parabolic equation method. J. Physics (Moscow), 10(1), 13–24.

  75. Lugura D., Letrou C., Shlivinski A., Heyman E. and Boag A., 2003. Frame-based Gaussian beam summation method: theory and applications. Radio Sci., 38, 8026, doi:10.1029/2001RS002593.

  76. Luneburg R.K., 1944. Mathematical Theory of Optics. Lecture notes, Brown University, Providence, Rhode Island.

  77. Luneburg R.K., 1964. Mathematical Theory of Optics. University of California Press, Berkeley and Los Angeles.

  78. Nowack R.L., 2003. Calculation of synthetic seismograms with Gaussian beams. Pure Appl. Geophys., 160, 487–507.

  79. Nowak S. and Orefice A., 1993. Quasioptical treatment of electromagnetic Gaussian beams in inhomogeneous and anisotropic plasmas. Phys. Fluids B, 5, 1945–1954.

  80. Pereverzev G.V., 1996. Paraxial WKB solution of a scalar wave equation. In: B.B. Kadomtsev (Ed.), Reviews in Plasma Physics, 19, 1–48.

  81. Pereverzev G.V., 1998. Beam tracing in inhomogeneous anisotropic plasma. Phys. Plasmas, 5, 3529–3541.

  82. Pereverzev G.V., 2001. Paraxial WKB description of short wavelength eigenmodes in a tokamak. Phys. Plasmas, 8, 3664–3672.

  83. Permitin G.V. and Smirnov A.I., 1996. Quasioptics of smoothly inhomogeneous isotropic media. Sov Phys. JETP, 82, 395–402.

  84. Permitin G.V. and Smirnov A.I., 2001. Wave packets in smoothly inhomogeneous dispersive media, Sov. Phys. JETP, 92, 10–19.

  85. Poli E., Pereverzev G.V. and Peeters A.G., 1999. Paraxial Gaussian wave beam propagation in anisotropic inhomogeneous plasma. Phys. Plasmas, 6, 5–11.

  86. Poli E., Pereverzev G.V., Peeters A.G. and Bornatici M., 2001. EC beam tracing in fusion plasma. Fusion Eng. Des., 53, 9–21.

  87. Popov M.M., 1969. Eigen-oscillations of multi-mirrors resonators. Vestnik Leningradskogo Universiteta, N.22, 44–54 (in Russian).

  88. Popov M.M., 1977. On a method of computation of geometrical spreading in ihomogeneous media containing interfaces. Dokl. Akad. Nauk SSSR, 237, 1059–1062 (in Russian).

  89. Popov M.M., 1981. A new method of computing wave fields in the high frequency approximation. J. Sov. Math., 20, 1869–1882.

  90. Popov M.M., 1982. New method of computation of wave fields using Gaussian beams. Wave Motion, 4, 85–95.

  91. Popov M.M., 2002. Ray Theory and Gaussian Beam Method for Geophysicists. EDUFBA, Slavador, Brasil.

  92. Popov M.M. and Pšenčik I., 1978a. Ray amplitudes in inhomogeneous media with curved interfaces. Travaux Géophysiques, 24, 118–129.

  93. Popov M.M. and Pšenčik I., 1978b. Computation of ray amplitudes in inhomogeneous media with curved interfaces. Stud. Geophys. Geod., 22, 248–258.

  94. Popov M.M. and Tyurikov L.G., 1981. Two approaches for calculation of geometrical spreading in inhomogeneous isotropic medium. In: G.I. Petrashen (Ed.), Problems of the Dynamic Theory of Propagation of Seismic Waves, 20, Nauka, Leningrad (in Russian).

  95. Ralston J., 1976. On the construction of quasimodes associated with stable periodic orbits. Commun. Math. Phys., 51, 219–242.

  96. Ralston J., 1977. Approximate eigenfunctions of the Laplacian. J. Diff. Geometry, 12, 87–100.

  97. Ralston J., 1983. Gaussian beams and the propagation of singularities. In: W. Littman (Ed.), Studies in Partial Differential Equations, MAA Studies in Mathematics, 23, 206–248. The Math. Assoc. Amer., Washington, D.C.

  98. Rytov S.M., 1938. On the transition from wave to geometrical optics. Dokl. Akad. Nauk SSSR, 18, 263–267 (in Russian, Engl. transl. in B.I. Markovski and S.I. Vinitsky, Topological Phase in Quantum Theory. World Scientific, Singapore, 1989).

  99. Shlivinski A. and Heyman E., 2004. A phase-space beam summation formulation for ultrawideband radiation. IEEE Trans. Antennas Propag., 52, 2042–2056.

  100. Tang C.H., 1970. An orthogonal coordinate system for curved pipes. IEEE Trans. Antennas Propag., 28, 69–.

  101. Tappert F.D., 1978. The parabolic approximation method. In: Wave Propagation and Underwater Acoustics, Lecture Notes in Physics, 70, 224–285. Springer Verlag, Berlin, Heidelberg.

  102. Timofeev A.B., 1995. Gaussian Wave Beams in Inhomogeneous Media. Plasma Phys. Rep., 21, 610–611.

  103. Timofeev A.B., 2005. Geometrical optics and the diffraction phenomenon. Physics-Uspekhi, 48, 609–613.

  104. Thomson C.J., 1997. Complex rays and wave packets for decaying signals in inhomogeneous, anisotropic and inelastic media. Stud. Geophys. Geod., 41, 345–381.

  105. Vinitsky S.I., Debrov V.I., Dubovik V.M., Markovski B.I. and Stepanovskii Yu.P., 1990. Topological phases in quantum mechanics and polarization optics. Sov. Physics Uspekhi, 33, 403–450.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kravtsov, Y.A., Berczynski, P. Gaussian beams in inhomogeneous media: A review. Stud Geophys Geod 51, 1–36 (2007). https://doi.org/10.1007/s11200-007-0002-y

Download citation


  • Gaussian beams
  • Gaussian beam propagation and diffraction
  • complex geometrical optics
  • dynamic ray tracing method