Advertisement

Studia Geophysica et Geodaetica

, Volume 50, Issue 2, pp 217–232 | Cite as

Effect of lateral viscosity variations in the core-mantle boundary region on predictions of the long-wavelength geoid

  • O. Čadek
  • L. Fleitout
Article

Abstract

Seismic studies of the lowermost mantle suggest that the core-mantle boundary (CMB) region is strongly laterally heterogeneous over both local and global scales. These heterogeneities are likely to be associated with significant lateral viscosity variations that may influence the shape of the long-wavelength non-hydrostatic geoid. In the present paper we investigate the effect of these lateral viscosity variations on the solution of the inverse problem known as the inferences of viscosity from the geoid. We find that the presence of lateral viscosity variations in the CMB region can significantly improve the percentage fit of the predicted data with observations (from 42 to 70% in case of free-air gravity) while the basic characterisics of the mantle viscosity model, namely the viscosity increase with depth and the rate of layering, remain more or less the same as in the case of the best-fitting radially symmetric viscosity models. Assuming that viscosity is laterally dependent in the CMB region, and radially dependent elsewhere, we determine the largescale features of the viscosity structure in the lowermost mantle. The viscosity pattern found for the CMB region shows a high density of hotspots above the regions of higher-than-average viscosity. This result suggests an important role for petrological heterogeneities in the lowermost mantle, potentially associated with a post-perovskite phase transition. Another potential interpretation is that the lateral viscosity variations derived for the CMB region correspond in reality to lateral variations in the mechanical conditions at the CMB boundary or to large-scale undulations of a chemically distinct layer at the lowermost mantle.

Key words

core-mantle boundary D″ lateral viscosity variations geoid post-perovskite phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bijwaard H., Spakman W. and Engdahl E.R., 1998. Closing the gap between regional and global travel time tomography. J. Geophys. Res., 103, 30,055–30,078.Google Scholar
  2. Čadek O. and Fleitout L., 1999. A geoid model with imposed plate velocities and partial layering. J. Geophys. Res., 104, 29,055–29,075.Google Scholar
  3. Čadek O. and Fleitout L., 2003. Effect of lateral viscosity variations in the top 300 km on the geoid and dynamic topography. Geophys. J. Int., 152, 566–580.CrossRefGoogle Scholar
  4. Čadek O., Kývalová H. and Yuen D.A., 1995. Geodynamical implications from the correlation of surface geology and seismic tomographic structure. Earth Planet. Sci. Lett., 136, 615–627.CrossRefGoogle Scholar
  5. Čadek O., Ricard Y., Martinec Z. and Matyska C., 1993. Comparison between Newtonian and non-Newtonian flow driven by internal loads. Geophys. J. Inter., 112, 103–114.Google Scholar
  6. Colin P., 1993. Géoid global, topographie associée et structure de la convection dans le manteau terrestre: Modélisation et observation. Ph.D. Thesis, Ecole normale supérieure, Paris, France.Google Scholar
  7. Coltice N. and Ricard Y., 1999. Geochemical observations and one layered mantle convection. Earth Planet. Sci. Lett., 174, 125–137.CrossRefGoogle Scholar
  8. Christensen U.R. and Hofmann A.W., 1994. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res., 99, 19,867–19,884.Google Scholar
  9. Davaille A., Girard F. and Le Bars M., 2002. How to anchor hotspots in a convecting mantle? Earth Planet. Sci. Lett., 203, 621–634.CrossRefGoogle Scholar
  10. Doin M.-P., Fleitout L. and McKenzie D., 1996. Geoid anomalies and the structure of continental and oceanic lithospheres. J. Geophys. Res., 101, 16,119–16,135.Google Scholar
  11. Dumoulin C., Doin M.-P. and Fleitout L., 1999. Heat transport in stagnant lid convection with temperature-and pressure-dependent Newtonian or non-Newtonian rheology. J. Geophys. Res., 104, 12,759–12,777.Google Scholar
  12. Forte A.M. and Peltier W.R., 1994. The kinematics and dynamics of poloidal-toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations. Advances in Geophysics, 36, 1–119.CrossRefGoogle Scholar
  13. Forte A.M., Woodward R.L. and Dziewonski A.M., 1994. Joint inversions of seismic and geodynamical data for models of three-dimensional mantle heterogeneity. J. Geophys. Res., 99, 21,857–21,877.Google Scholar
  14. Fisher J.L., Wysession M.E. and Fischer K.M., 2003. Small-scale lateral variations in D″ attenuation and velocity structure. Geophys. Res. Lett., 30, Art. No. 1435.Google Scholar
  15. Garnero J.E., Revenaugh J., Williams Q., Lay T. and Kellogg L.H., 2000. Ultralow velocity zone at the core-mantle boundary. In: M. Gurnis, M.E. Wysession, E. Knittle and B.A. Buffett (Eds.), The Core-Mantle Boundary Region, Geophysics Series, 28, AGU, Washington, D.C., 319–334.Google Scholar
  16. Hager B.H. and Clayton, R.W., 1989. Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid. In: W.R. Peltier (Ed.), Mantle Convection: Plate Tectonics and Global Dynamics, Gordon and Breach, Newark, N.J., 657–763.Google Scholar
  17. Hirose K. and Fujita Y., 2005. Clapeyron slope of the post-perovskite phase transition in CaIrO3. Geophys. Res. Lett., 32, L13313, doi:10.1029/2005GL023219.Google Scholar
  18. Hofmann A.W. and White W.M., 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57, 421–436.CrossRefGoogle Scholar
  19. Jellinek A.M. and Manga M., 2002. The inuence of a chemical boundary layer on the fixity and lifetime of mantle plumes. Nature, 418, 760–763.CrossRefGoogle Scholar
  20. Kendall M., 2004. Tectonics of the lower mantle. Astron. Geophys., 45, 30–34.CrossRefGoogle Scholar
  21. Kido M. and Čadek O., 1997. Inferences of viscosity from oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity. Earth Planet. Sci. Lett., 151, 125–138.CrossRefGoogle Scholar
  22. King S.D., 1995. Radial models of mantle viscosity: Results from a genetic algorithm. Geophys. J. Int., 122, 725–734.Google Scholar
  23. King S.D. and Hager B.H., 1994. Subducted slabs and the geoid: 1) numerical calculations with temperature-dependent viscosity. J. Geophys. Res., 99, 19,843–19,852.Google Scholar
  24. Lay T., Garnero E.J. and Russell S.A., 2004. Lateral variations of the D″ discontinuity beneath the Cocos Plate. Geophys. Res. Lett., 31, L15612.Google Scholar
  25. Le Stunff Y. and Ricard Y., 1995. Topography and geoid due to lithospheric mass anomalies. Geophys. J. Int., 122, 982–990.Google Scholar
  26. Montelli R., Nolet G., Dahlen F.A., Masters G., Engdahl E.R. and Hung S.H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.CrossRefGoogle Scholar
  27. Moresi L. and Gurnis M., 1996. Constraints on the lateral strength of slabs from threedimensional dynamic flow models. Earth Planet. Sci. Lett., 138, 15–28.CrossRefGoogle Scholar
  28. Morgan W.J., 1971. Convection plumes in the lower mantle. Nature, 230, 42–43.CrossRefGoogle Scholar
  29. Murakami M., Hirose K., Kawamura K., Sata N. and Ohishi Y., 2004. Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.CrossRefGoogle Scholar
  30. Nataf H.C. and Ricard Y., 1996. 3SMAC: An a priori tomographic model of the upper mantle based on geophysical modeling. Phys. Earth Planet. Inter., 95, 101–122.CrossRefGoogle Scholar
  31. Panning M. and Romanowicz B., 2004. Inferences on ow at the base of Earth’s mantle based on seismic anisotropy. Science, 303, 351–353.CrossRefGoogle Scholar
  32. Peltier W.R., Forte A.M., Mitrovica J.X. and Dziewonski A.M., 1992. Earth’s gravitational field: Seismic tomography resolves the enigma of the Laurentian anomaly. Geophys. Res. Lett., 19, 1555–1558.Google Scholar
  33. Press V.H., Teukolsky S.A., Wetterling W.T. and Flannery B.P., 1992. Numerical Recipes in Fortran. The Art of Scientific Computing. Cambridge University Press, Cambridge.Google Scholar
  34. Ravine M.A. and Phipps Morgan J., 1993. Geoid effects of lateral viscosity variations near the top of the mantle: a 2D model. Earth Planet. Sci. Lett., 119, 617–625.CrossRefGoogle Scholar
  35. Ribe N.M., 1992. The dynamics of thin shells with variable viscosity and the origin of toroidal flow in the mantle. Geophys. J. Int., 110, 537–552.Google Scholar
  36. Ricard Y. and Bai W., 1991. Inferring viscosity and the 3-D density structure of the mantle from geoid, topography and plate velocities. Geophys. J. Int., 105, 561–572.Google Scholar
  37. Ricard Y., Fleitout L. and Froidevaux C., 1984. Geoid heights and lithospheric stresses for a dynamic Earth. Ann. Geophys., 2, 267–286.Google Scholar
  38. Ricard Y., Richards M.A., Lithgow-Bertelloni C. and Le Stunff Y., 1993. A geodynamic nodel of mass heterogeneity. J. Geophys. Res., 98, 21,895–21,909.Google Scholar
  39. Ricard Y., Vigny C. and Froidevaux C., 1989. Mantle heterogeneities, geoid, and plate motion-a Monte Carlo inversion. J. Geophys. Res., 94, 13,739–13,754.Google Scholar
  40. Richards M.A. and Engebretson D.C., 1992. Large-scale mantle convection and the history of subduction. Nature, 355, 437–440.CrossRefGoogle Scholar
  41. Richards M.A. and Hager B.H., 1984. Geoid anomalies in a dynamic Earth. J. Geophys. Res., 89, 5987–6002.CrossRefGoogle Scholar
  42. Richards M.A. and Hager B.H., 1989. Effects of lateral viscosity variations on long wavelength geoid anomalies and topography. J. Geophys. Res., 94, 10,299–10,313.Google Scholar
  43. Steinberger B. and O’Connell R.J., 1998. Advection of plumes in mantle flow: Implication for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int., 132, 412–434.CrossRefGoogle Scholar
  44. Steinberger B., 2000. Slabs in the lower mantle-results of dynamic modelling compared with tomographic images and the geoid. Phys. Earth Planet. Inter., 118, 241–257.CrossRefGoogle Scholar
  45. Su W.J., Woodward R.L. and Dziewonski A.M., 1994. Degree-12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res., 99, 6945–6980.CrossRefGoogle Scholar
  46. Tackley P., 2000. Three-dimensional simulations of mantle convection with a thermochemical basal boundary layer: D″?. In: M. Gurnis, M.E. Wysession, E. Knittle and B.A. Buffett (Eds.), The Core-Mantle Boundary Region, Geophysics Series, 28, AGU, Washington, D.C., 231–253.Google Scholar
  47. Thoraval C., Machetel P. and Cazanave A., 1995. Locally layered convection inferred from dynamic models of the Earth’s mantle. Nature, 375, 777–780.CrossRefGoogle Scholar
  48. Thorne M.S. and Garnero E.J., 2004. Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res., 109, B08301.Google Scholar
  49. Tkalcic H. and Romanowicz B., 2002. Short scale heterogeneity in the lowermost mantle: insights from PcP-P and ScS-S data. Earth Planet. Sci. Lett., 201, 57–68.CrossRefGoogle Scholar
  50. Tsuchiya T., Tsuchyia J., Umemoto K. and Wentzcovitch R.M., 2004. Phase transition in MgSiO3-perovskite in the earth’s lower mantle. Earth Planet. Sci. Lett., 224, 241–248.CrossRefGoogle Scholar
  51. van der Hilst R.D., Widiyantoro S. and Engdahl E.R., 1997. Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584.CrossRefGoogle Scholar
  52. Wen L. and Anderson D.L., 1997. Present-day plate motion constraint on mantle rheology and convection. J. Geophys. Res., 102, 24,639–24,653.Google Scholar
  53. Zhang S. and Christensen U.R., 1993. Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle. Geophys. J. Int., 114, 531–547.Google Scholar
  54. Zhong S., 2001. Role of ocean-continent contrast and continental keels on plate motion, net rotation of lithosphere, and the geoid. J. Geophys. Res., 106, 703–712.CrossRefGoogle Scholar
  55. Zhong S. and Davies G.F., 1999. Effects of plate and slab viscosities on the geoid. Earth Planet Sci. Lett., 170, 487–496.CrossRefGoogle Scholar

Copyright information

© StudiaGeo s.r.o. 2006

Authors and Affiliations

  • O. Čadek
    • 1
  • L. Fleitout
    • 2
  1. 1.Department of Geophysics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Laboratoire de géologie, Ecole normale supérieureParisFrance

Personalised recommendations