Advertisement

Studia Geophysica et Geodaetica

, Volume 49, Issue 2, pp 191–212 | Cite as

On the effect of lava viscosity on the magnetic fabric intensity in alkaline volcanic rocks

  • F. Hrouda
  • M. Chlupáčová
  • K. Schulmann
  • J. Šmíd
  • P. Závada
Article

Abstract

The degree of the anisotropy of magnetic susceptibility (AMS) of basaltic rocks, as is known from the large AMS database of these rocks, is generally very low, while in more acidic volcanic rocks such as andesites, trachytes and phonolites, which have been investigated much less frequently, it is in general much higher. In the present study, the AMS of various volcanic rocks including trachytic and phonolitic rocks was investigated in the Tertiary volcanic region of the České středohoří Mts. Viscosities of the respective lavas were calculated from the chemical composition using the KWARE program. A rough correlation was found between the degree of AMS and lava viscosities, probably resulting from different mechanisms orienting the magnetic minerals. In basaltic lava flows this mechanism is traditionally considered to be of a hydrodynamic nature, in trachytic and phonolitic bodies it can also be represented by quasi-intrusive flows resembling, at least partially, ductile flow deformation. This is in agreement with the AMS data predicted by the viscous (liquid flow) and line/plane (ductile flow) models.

Keywords

magnetic anisotropy lava viscosity volcanic rocks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilby B.A., Eshelby J.D. and Kundu A.K., 1975. The change of shape of a viscous ellipsoidal region embedded in a slowly deforming matrix having a different viscosity. Tectonophysics, 28, 265–274.CrossRefGoogle Scholar
  2. Cajz V., Vokurka K., Balogh K., Lang M. and Ulrych J., 1999. The České Středohoří Mts.: volcanostratigraphy and geochemistry. Geolines, 9, 21–28.Google Scholar
  3. Callot J.P., Geoffroy L., Aubourg C., Pozzi J.P. and Mege D., 2001. Magma flow directions of shallow dykes from the East Greenland volcanic margin inferred from magnetic fabric studies. Tectonophysics, 335, 313–329.CrossRefGoogle Scholar
  4. Canon-Tapia E., Walker G.P.L. and Hererro-Bervera E., 1995. Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle Volcano, Mexico. J. Volcanol. Geotherm. Res., 65, 249–263.CrossRefGoogle Scholar
  5. Ellwood B.B., 1978. Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements. Earth Planet. Sci. Lett., 41, 254–264.CrossRefGoogle Scholar
  6. Ellwood B.B., 1982. Estimates of flow direction for calc-alkaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: central San Juan Mountains, southwest Colorado. Earth Planet. Sci. Lett., 59, 303–314.CrossRefGoogle Scholar
  7. Ellwood B.B. and Fisk M.R., 1977. Anisotropy of magnetic susceptibility variations in a single Icelandic columnar basalt. Earth Planet..Sci. Lett., 35, 116–122.CrossRefGoogle Scholar
  8. Ernst R.E., 1990. Magma flow directions in two mafic Proterozoic dyke swarms of the Canadian Shield as estimated using anisotropy of magnetic susceptibility data. In: A.J. Parker, P.C. Rickwood and D.H. Tucker (Eds.), Mafic Dykes and Emplacement Mechanisms, Balkema, Rotterdam, 231–235.Google Scholar
  9. Gay N.C., 1968. The motion of rigid particles embedded in a viscous fluid during pure shear deformation of the fluid. Tectonophysics, 5, 81–88.CrossRefGoogle Scholar
  10. Geoffroy L., Callot J.P., Aubourg C. and Moreira M., 2002. Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova, 14, 183–190.CrossRefGoogle Scholar
  11. Halvorsen E., 1974. The magnetic fabric of some dolerite intrusions, NE. Spitsbergen; implication for their mode of emplacement. Earth Planet. Sci. Lett., 21, 127–133.CrossRefGoogle Scholar
  12. Hejtman B., 1957. Systematická petrografie vyvřelých hornin (Systematic Petrography of Igneous Rocks). Nakl. ČSAV, Praha, Czech Republic (in Czech).Google Scholar
  13. Herrero-Bervera E., Walker G.P.L., Canon-Tapia E. and Garcia M.O., 2001. Magnetic fabric and inferred flow direction of dikes, conesheets and sill swarms, Isle of Skye, Scotland. J. Volcanol. Geotherm. Res., 106, 195–210.CrossRefGoogle Scholar
  14. Henry B., Cams P. and Plenier G., 2003. Magnetic fabric of Miocene lavas in the Jeanne d’Arc peninsula (Kerguelen islands). J. Volcanol. Geotherm. Res., 127, 153–164.CrossRefGoogle Scholar
  15. Hibsch J.E., 1899. Geologische Karte des Böhmischen Mittelgebirges. Blatt II (Ronstock-Bodenbach), Wien, Austria (in German).Google Scholar
  16. Hibsch J.E., 1900. Beiträge zur Geologie des Böhmischen Mittelgebirges II. Tschermaks mineral. petrog. Mitt., 19, 489–497 (in German).Google Scholar
  17. Hibsch J.E., 1911. Geologische Karte des Böhmischen Mittelgebirges, Blatt VI (Wernstadt-Zinkenstein) nebst Erläuterungen. Tschermaks Min. und Petr. Mitteilungen, XXIX Band, Heft 5 (in German).Google Scholar
  18. Hibsch J.E., 1926. Erläuterungen zur Geologischen Űbersichtskarte des Böhmischen Mittelgebirges und der unmittelbar angrenzten Gebiete. Tetschen, 158 pp. (in German).Google Scholar
  19. Hibsch J.E., 1930. Geologischer Führer durch das Böhmische Mittelgebirge. Bornträger, Berlin, 363 pp. (in German).Google Scholar
  20. Hrouda F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., 5, 37–82.CrossRefGoogle Scholar
  21. Hrouda F., 1985. The magnetic fabric in the Brno massif. Sbor. geol. věd, UG, 89–112.Google Scholar
  22. Hrouda F., 1993. Theoretical models of magnetic anisotropy to strain relationship revisited. Phys. Earth Planet. Inter., 77, 237–249.CrossRefGoogle Scholar
  23. Hrouda F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. J. Int., 118, 604–612.Google Scholar
  24. Hrouda F., 2003. Indices for numerical characterization of the alteration processes of magnetic minerals taking place during investigation of temperature variation of magnetic susceptibility. Stud. Geophys. Geod., 47, 847–861.CrossRefGoogle Scholar
  25. Hrouda F. and Lanza R., 1989. Magnetic anisotropy in the Biella and Traversella stocks (Periadriatic Line): implications for the emplacement mode. Phys. Earth Planet. Inter., 56, 337–348.CrossRefGoogle Scholar
  26. Hrouda F., Jelínek V. and Hrušková L., 1990. A package of programs for statistical evaluation of magnetic anisotropy data using IBM-PC computers. EOS Trans AGU, 71, 1289.Google Scholar
  27. Hrouda F., Melka R. and Schulmann K., 1994. Periodical changes in fabric intensity during simple shear deformation and its implications for magnetic susceptibility anisotropy of sedimentary and volcanic rocks. Acta Univ. Carol. Geologica, 38, 37–56.Google Scholar
  28. Hrouda F., Jelínek V. and Zapletal K., 1997. Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophys. J. Int., 129, 715–719.Google Scholar
  29. Incoronato A., Addison F.T., Tarling D.H., Nardi G. and Pescatore T., 1983. Magnetic fabric investigations of pyroclastic deposits from Phlegrean Fields, southern Italy. Nature, 306, 461–463.CrossRefGoogle Scholar
  30. Jeffery G. B., 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London, 102, 161–179.Google Scholar
  31. Jelínek V., 1978. Statistical processing of magnetic susceptibility measured on groups of specimens. Stud. Geophys. Geod., 22, 50–62.CrossRefGoogle Scholar
  32. Jelínek 1981. Characterization of magnetic fabric of rocks. Tectonophysics,79, T63–T67.CrossRefGoogle Scholar
  33. Jelínek V. and Pokorný J., 1997. Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Phys. Chem. Earth, 22, 179–181.CrossRefGoogle Scholar
  34. Khan M.A., 1962. The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks. J. Geophys. Res., 67, 2873–2885.Google Scholar
  35. Knight M.D. and Walker G.P.L., 1988. Magma flow directions in dikes of the Koolan Complex, Oahu, determined from magnetic fabric studies. J. Geophys. Res., 93, 4308–4319.Google Scholar
  36. Knight M.D., Walker G.P.L., Ellwood B.B. and Diehl J.F., 1986. Stratigraphy, paleomagnetism, and magnetic fabric of the Toba tuffs: Constraints on the sources and eruptive styles. J. Geophys. Res., 91, 355–382.Google Scholar
  37. Kolofíková O., 1976. Geological interpretation of measurement of magnetic properties of basalts on example of the Chřibský les lava flow of the Velký Roudný volcano (Nízký Jeseník Mts.). Čas. mineral. geol., 21, 387–396 (in Czech).Google Scholar
  38. Kopecký L., 1966. Tertiary volcanics. In: J. Svododa et al., Regional Geology of Czechoslovakia, Part I, The Bohemian Massif, Academia, Prague, Czech Republic, 554–580.Google Scholar
  39. Kropáček V., 1976. Changes of the magnetic properties of Tertiary alkaline basalts under oxidation of titanomagnetites. Publs. Inst. Geoph. Pol. Ac. Sci., C-1(102), 75–85.Google Scholar
  40. Kropáček V. and Pokorná Z., 1973. Magnetische Eigenschaften basischer neovulkanischer Gesteine der Boehmischen Masse und ihre Zusammenhaenge mit petrologischen Charakteristiken. Geof. Sborník, 21, 287–348 (in German).Google Scholar
  41. Le Bas M.J., Le Maitre R.W., Streckeisen A. and Zanettin B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol., 27, 745–750.Google Scholar
  42. Le Maitre, R.W. et al. (Eds.), 2002. Igneous Rocks. Classification and Glossary Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Casmbridge, U.K., 236 pp.Google Scholar
  43. MacDonald W.D. and Palmer H.C., 1990. Flow directions in ash-flow tuffs: a comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles caldera, New Mexico, USA. Bull. Volcanol., 53, 45–59.CrossRefGoogle Scholar
  44. Macháček V.A. and Shrbený O., 1973. Geochemistry of trachytic rocks of the České středohoří Mts. Čas. Mineral. Geol., 18(2), 131–161.Google Scholar
  45. March A., 1932. Mathemathische Theorie der Regelung nach der Korngestalt bei Affiner Deformation. Z. Kristallogr., 81, 285–298 (in German).Google Scholar
  46. McGill R., Tukey J.W. and Larsen W.A., 1978. Variation of box plots. Am. Stat., 32, 12–16.Google Scholar
  47. Nagata T., 1961. Rock Magnetism. Maruzen, Tokyo.Google Scholar
  48. Osborn J.A., 1945. Demagnetizing factors of the general ellipsoid. Phys. Rev., 67, 351–357.CrossRefGoogle Scholar
  49. Owens W.H., 1974. Mathematical model studies on factors affecting the magnetic anisotropy of deformed rocks. Tectonophysics, 24, 115–131.CrossRefGoogle Scholar
  50. Palmer H.C., MacDonald W.D. and Hayatsu A., 1991. Magnetic, structural and geochronologic evidence bearing on volcanic sources and Oligocene deformation of ash flow tuffs, Northeast Nevada. J. Geophys. Res., 96, 2185–2202.Google Scholar
  51. Parma J., Hrouda F., Pokorný J., Wohlgemuth J., Suza P., Šilinger P. and Zapletal K., 1993. A technique for measuring temperature dependent susceptibility of weakly magnetic rocks. EOS Trans. AGU Suppl., 113.Google Scholar
  52. Petrovský E. and Kapička A., 2005. Comments on “The use of field dependence of magnetic susceptibility for monitoring variations in titanomagnetite composition-a case study on basanites from the Vogelsberg 1996 drillhole, Germany” by de Wall and Nano, Stud. Geophys. Geod., 48, 767–776. Stud. Geophys. Geod., 49, 255–258.Google Scholar
  53. Pokorný J., Suza P. and Hrouda F., 2004. Anisotropy of magnetic susceptibility of rocks measured in variable weak magnetic fields using the KLY-4S Kappabridge. In: F. Martin-Hernandez, C. Luneburg, C. Aubourg and M. Jackson (Eds.), Magnetic Fabric: Methods and Applications, Spec. Publ. Geol. Soc. London, 238, 69–76.Google Scholar
  54. Shaw H.R., 1972. Viscosities of magmatic silicate liquids: an empirical method of prediction. Am. J. Sci., 272, 870–893.Google Scholar
  55. Stacey F.D. and Benerjee S.K., 1974. The Physical Principles of Rock Magnetism. Development in Solid Earth Geophysics. Elsevier, Amsterdam, 195 pp.Google Scholar
  56. Stone D.B., 1963. Anisotropic magnetic susceptibility measurements on a phonolite and on a folded metamorphic rock. Geophysical Journal, 7, 375–390.Google Scholar
  57. Stoner E.C., 1945. The demagnetizing factor for ellipsoids. Phil. Mag., 36, 803–820.Google Scholar
  58. Tarling D.H. and Hrouda F., 1993. The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 217 pp.Google Scholar
  59. Ulrych J., Cajz V., Pivec E., Novák J.T., Nekovářík C. and Balogh K., 2000. Cenozoic intraplate alkaline volcanism of Western Bohemia. Stud. Geophys. Geod., 44, 346–351.CrossRefGoogle Scholar
  60. Uyeda S., Fuller M.D., Belshé J.C and Girdler R.W., 1963. Anisotropy of magnetic susceptibility of rocks and minerals. J. Geophys. Res., 68, 279–291.Google Scholar
  61. Wing-Fatt L. and Stacey F.D., 1966. Magnetic anisotropy of laboratory materials in which magma flow is simulated. Pure Appl. Geophys., 64, 78–80.CrossRefGoogle Scholar

Copyright information

© StudiaGeo s.r.o. 2005

Authors and Affiliations

  • F. Hrouda
    • 1
    • 2
  • M. Chlupáčová
    • 1
  • K. Schulmann
    • 2
    • 3
  • J. Šmíd
    • 2
  • P. Závada
    • 2
  1. 1.AGICO Inc.BrnoCzech Republic
  2. 2.Institute of Petrology and Structural GeologyCharles UniversityPrague 2Czech Republic
  3. 3.Université Louis Pasteur Strasbourg I.Strasbourg CedexFrance

Personalised recommendations