Advertisement

Sex Roles

pp 1–12 | Cite as

Half a Century of Stereotyping Associations Between Gender and Intellectual Ability in Films

  • Ramiro H. GálvezEmail author
  • Valeria Tiffenberg
  • Edgar Altszyler
Original Article

Abstract

A particularly longstanding, prevalent, and well-documented stereotype is the belief that men possess higher-level cognitive abilities than women do. This brilliance = male stereotype has been shown to be endorsed even by children as young as 6-years-old and is believed to be a factor driving the underrepresentation of women in STEM fields. Motivated by the fact that cultural products serve as a source for acquiring individual values and behaviors, we study the presence of this stereotype in a large collection of movie transcripts covering half a century of Western-world film history (n = 11,550). Concretely, we use natural language processing techniques to quantify associations between gender pronouns and high-level cognitive ability-related words. Overall, our estimates suggest that, at an aggregate level, the brilliance = male stereotype is effectively present in films and that movies specifically targeted at children contain this stereotypical association. Moreover, this pattern seems to have been quite persistent for the last 50 years.

Keywords

Gender stereotypes Brilliance = male stereotype STEM fields Film history Culturomics Computational content analysis 

Notes

Acknowledgements

We thank OpenSubtitles.org administrators (www.opensubtitles.org) for their invaluable help in gathering subtitle data. We also thank Luciana Ferrer, Carlos Diuk, Diego Fernández Slezak, Julieta Schiro and Agustín Gravano for fruitful discussions and useful comments on the manuscript.

Compliance with Ethical Standards

Disclosure of Potential Conflicts of Interest

The authors declare no potential conflicts of interest.

Research Involving Human Participants and/or Animals

The research did not involved human participants and/or animal.

Informed Consent

The research did not require and informed consent.

References

  1. Bandura, A., Ross, D., & Ross, S. A. (1963). Imitation of film-mediated aggressive models. The Journal of Abnormal and Social Psychology, 66(1), 3–11.CrossRefGoogle Scholar
  2. Bem, S. L. (1981). Gender schema theory: A cognitive account of sex typing. Psychological Review, 88(4), 354–364.CrossRefGoogle Scholar
  3. Bian, L., Leslie, S.-J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355(6323), 389–391 http://science.sciencemag.org/content/355/6323/389. Accessed 1 Feb 2019.
  4. Broverman, I. K. (1970). Sex-role stereotypes and clinical judgments of mental health. Journal of Consulting and Clinical Psychology, 34(1), 1–7.CrossRefGoogle Scholar
  5. Cape, G. S. (2003). Addiction, stigma and movies. Acta Psychiatrica Scandinavica, 107(3), 163–169.  https://doi.org/10.1034/j.1600-0447.2003.00075.x.CrossRefGoogle Scholar
  6. Carlana, M. (2018). Implicit stereotypes: Evidence from teachers’ gender bias. HKS Working Papers. No. RWP18–034. https://ssrn.com/abstract=3274717. Accessed 1 Feb 2019.
  7. Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics: Simulation and Computation, 39(4), 860–864.  https://doi.org/10.1080/03610911003650383.CrossRefGoogle Scholar
  8. Cheryan, S., Plaut, V. C., Handron, C., & Hudson, L. (2013). The stereotypical computer scientist: Gendered media representations as a barrier to inclusion for women. Sex Roles, 69(1–2), 58–71 https://link.springer.com/article/10.1007/s11199-013-0296-x. Accessed 1 Feb 2019.
  9. Church, K. W., & Hanks, P. (1990). Word association norms, mutual information, and lexicography. Computational Linguistics, 16(1), 22–29 http://dl.acm.org/citation.cfm?id=89086.89095. Accessed 1 Feb 2019.
  10. Collins, R. L. (2011). Content analysis of gender roles in media: Where are we now and where should we go? Sex Roles, 64(3–4), 290–298.  https://doi.org/10.1007/s11199-010-9929-5.CrossRefGoogle Scholar
  11. Crowley, K., Callanan, M. A., Tenenbaum, H. R., & Allen, E. (2001). Parents explain more often to boys than to girls during shared scientific thinking. Psychological Science, 12(3), 258–261.  https://doi.org/10.1111/1467-9280.00347.CrossRefGoogle Scholar
  12. Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math–gender stereotypes in elementary school children. Child Development, 82(3), 766–779.  https://doi.org/10.1111/j.1467-8624.2010.01529.x.CrossRefGoogle Scholar
  13. Dimnik, T., & Felton, S. (2006). Accountant stereotypes in movies distributed in North America in the twentieth century. Accounting, Organizations and Society, 31(2), 129–155.  https://doi.org/10.1016/j.aos.2004.10.001.CrossRefGoogle Scholar
  14. Flicker, E. (2003). Between brains and breasts—women scientists in fiction film: On the marginalization and sexualization of scientific competence. Public Understanding of Science, 12(3), 307–318.CrossRefGoogle Scholar
  15. Furnham, A., Reeves, E., & Budhani, S. (2002). Parents think their sons are brighter than their daughters: Sex differences in parental self-estimations and estimations of their children’s multiple intelligences. The Journal of Genetic Psychology, 163(1), 24–39.  https://doi.org/10.1080/00221320209597966.CrossRefGoogle Scholar
  16. Gaertner, S. L., & McLaughlin, J. P. (1983). Racial stereotypes: Associations and ascriptions of positive and negative characteristics. Social Psychology Quarterly, 46(1), 23–30 http://www.jstor.org/stable/3033657. Accessed 1 Feb 2019.
  17. Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635–E3644.CrossRefGoogle Scholar
  18. Geena Davis Institute on Gender in Media. (2015). The reel truth: Women aren’t seen or heard. An automated analysis of gender representation in popular films. Retrieved from https://seejane.org/research-informs-empowers/data/. Accessed 1 Feb 2019.
  19. Haddock, C. K., Rindskopf, D., & Shadish, W. R. (1998). Using odds ratios as effect sizes for meta-analysis of dichotomous data: A primer on methods and issues. Psychological Methods, 3(3), 339–353.CrossRefGoogle Scholar
  20. Jurafsky, D., & Martin, J. H. (2000). Speech and language processing: An introduction to natural language processing, computational linguistics and speech recognition (3rd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  21. Kirkcaldy, B., Noack, P., Furnham, A., & Siefen, G. (2007). Parental estimates of their own and their children’s intelligence. European Psychologist, 12(3), 173–180.  https://doi.org/10.1027/1016-9040.12.3.173.CrossRefGoogle Scholar
  22. Koivula, N. (1999). Gender stereotyping in televised media sport coverage. Sex Roles, 41(7–8), 589–604.  https://doi.org/10.1023/A:1018899522353.CrossRefGoogle Scholar
  23. Lamoreaux, M., & Morling, B. (2012). Outside the head and outside individualism-collectivism: Further meta-analyses of cultural products. Journal of Cross-Cultural Psychology, 43(2), 299–327.  https://doi.org/10.1177/0022022110385234.CrossRefGoogle Scholar
  24. Larivière, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Bibliometrics: Global gender disparities in science. Nature News, 504(7479), 211–213.CrossRefGoogle Scholar
  25. Lenton, A. P., Sedikides, C., & Bruder, M. (2009). A latent semantic analysis of gender stereotype-consistency and narrowness in American English. Sex Roles, 60(3), 269–278.  https://doi.org/10.1007/s11199-008-9534-z.CrossRefGoogle Scholar
  26. Leslie, S.-J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347(6219), 262–265.  https://doi.org/10.1126/science.1261375.CrossRefGoogle Scholar
  27. Long, M., Steinke, J., Applegate, B., Knight Lapinski, M., Johnson, M. J., & Ghosh, S. (2010). Portrayals of male and female scientists in television programs popular among middle school-age children. Science Communication, 32(3), 356–382.CrossRefGoogle Scholar
  28. Maccoby, E. E., & Wilson, W. C. (1957). Identification and observational learning from films. Journal of Abnormal and Social Psychology, 55(1), 76–87.CrossRefGoogle Scholar
  29. Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K, The Google Books Team, … Aiden, E. L. (2011). Quantitative analysis of culture using millions of digitized books. Science, 331(6014), 176–182. http://science.sciencemag.org/content/331/6014/176. Accessed 1 Feb 2019.
  30. Morling, B., & Lamoreaux, M. (2008). Measuring culture outside the head: A meta-analysis of individualism—collectivism in cultural products. Personality and Social Psychology Review, 12(3), 199–221.  https://doi.org/10.1177/1088868308318260.CrossRefGoogle Scholar
  31. Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A, … Greenwald, A. G. (2009). National differences in gender–science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences, 106(26), 10593–10597.  https://doi.org/10.1073/pnas.0809921106.
  32. Olivier, J., & Bell, M. L. (2013). Effect sizes for 2 × 2 contingency tables. PLoS ONE, 8(3), 1–7.  https://doi.org/10.1371/journal.pone.0058777.CrossRefGoogle Scholar
  33. Orthia, L. A., & Morgain, R. (2016). The gendered culture of scientific competence: A study of scientist characters in doctor Who 1963–2013. Sex Roles, 75(3–4), 79–94.  https://doi.org/10.1007/s11199-016-0597-y.CrossRefGoogle Scholar
  34. Ramakrishna, A., Martìnez, V. R., Malandrakis, N., Singla, K., & Narayanan, S. (2017). Linguistic analysis of differences in portrayal of movie characters. In Proceedings of the 55th annual meeting of the association for computational linguistics (Vol. 1, pp. 1669–1678). Association for Computational Linguistics. Retrieved from http://www.aclweb.org/anthology/P17-1153. Accessed 1 Feb 2019.
  35. Reuben, E., Sapienza, P., & Zingales, L. (2014). How stereotypes impair women’s careers in science. Proceedings of the National Academy of Sciences, 111(12), 4403–4408.  https://doi.org/10.1073/pnas.1314788111.CrossRefGoogle Scholar
  36. Schütze, H., & Pedersen, J. (1993). A vector model for syntagmatic and paradigmatic relatedness. Proceedings of the 9th Annual Conference of the UW Centre for the New OED and Text Research, Vancouver, (pp 104–113).Google Scholar
  37. Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., … Ungar, L. H. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PLoS ONE, 8(9), 1–16.  https://doi.org/10.1371/journal.pone.0073791.
  38. Shumow, L., & Schmidt, J. A. (2013). Enhancing adolescents’ motivation for science. Thousand Oaks: Corwin Press.Google Scholar
  39. Silverstein, B., Perdue, L., Peterson, B., & Kelly, E. (1986). The role of the mass media in promoting a thin standard of bodily attractiveness for women. Sex Roles, 14(9–10), 519–532.  https://doi.org/10.1007/BF0028745.CrossRefGoogle Scholar
  40. Smith, D. G., Rosenstein, J. E., Nikolov, M. C., & Chaney, D. A. (2018). The power of language: Gender, status, and agency in performance evaluations. Sex Roles, 80, 159–171.  https://doi.org/10.1007/s11199-018-0923-7.CrossRefGoogle Scholar
  41. Smyth, F. L., & Nosek, B. A. (2015). On the gender–science stereotypes held by scientists: Explicit accord with gender-ratios, implicit accord with scientific identity. Frontiers in Psychology, 6, 1–19 https://www.frontiersin.org/article/10.3389/fpsyg.2015.00415. Accessed 1 Feb 2019.
  42. Steele, C. (1997). A threat in the air. How stereotypes shape intellectual identity and performance. The American Psychologist, 52(6), 613–629.  https://doi.org/10.1037//0003-066X.52.6.613.CrossRefGoogle Scholar
  43. Steinke, J. (2005). Cultural representations of gender and science: Portrayals of female scientists and engineers in popular films. Science Communication, 27(1), 27–63.  https://doi.org/10.1177/1075547005278610.CrossRefGoogle Scholar
  44. Steinke, J., & Tavarez, P. M. P. (2018). Cultural representations of gender and stem: Portrayals of female stem characters in popular films 2002-2014. International Journal of Gender, Science and Technology, 9(3), 244–277.Google Scholar
  45. Steinke, J., Lapinski, M. K., Crocker, N., Zietsman-Thomas, A., Williams, Y., Evergreen, S. H., … Kuchibhotla, S. (2007). Assessing media influences on middle school–aged children’s perceptions of women in science using the draw-a-scientist test (dast). Science Communication, 29(1), 35–64.Google Scholar
  46. Steinke, J., Applegate, B., Lapinski, M., Ryan, L., & Long, M. (2012). Gender differences in adolescents’ wishful identification with scientist characters on television. Science Communication, 34(2), 163–199.  https://doi.org/10.1177/1075547011410250.CrossRefGoogle Scholar
  47. Stoet, G., & Geary, D. C. (2018). The gender-equality paradox in science, technology, engineering, and mathematics education. Psychological Science, 29(4), 581–593.  https://doi.org/10.1177/0956797617741719.CrossRefGoogle Scholar
  48. Storage, D., Horne, Z., Cimpian, A., & Leslie, S.-J. (2016). The frequency of “brilliant” and “genius” in teaching evaluations predicts the representation of women and African Americans across fields. PLoS ONE, 11(3), 1–17.  https://doi.org/10.1371/journal.pone.0150194.CrossRefGoogle Scholar
  49. Tan, A.-L., Jocz, J. A., & Zhai, J. (2017). Spiderman and science: How students’ perceptions of scientists are shaped by popular media. Public Understanding of Science, 26(5), 520–530.CrossRefGoogle Scholar
  50. Tenenbaum, H. R., & Leaper, C. (2003). Parent-child conversations about science: The socialization of gender inequities? Developmental Psychology, 39(1), 34–47.  https://doi.org/10.1037/0012-1649.39.1.34.CrossRefGoogle Scholar
  51. Twenge, J. M., Campbell, W. K., & Gentile, B. (2012). Male and female pronoun use in U.S. books reflects women’s status, 1900–2008. Sex Roles, 67(9), 488–493.  https://doi.org/10.1007/s11199-012-0194-7.CrossRefGoogle Scholar
  52. Upson, S., & Friedman, L. F. (2012). Where are all the female geniuses? Scientific American Mind, 23(5), 63–65 http://www.jstor.org/stable/24942297. Accessed 1 Feb 2019.
  53. Williams, J. E., & Best, D. L. (1982). Measuring sex stereotypes: A thirty-nation study. Beverly Hills: Sage Publications, Inc..Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Departamento de Computación, FCEyNUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Ciencias de la Computación, CONICET-UBABuenos AiresArgentina
  3. 3.Fundación SadoskyBuenos AiresArgentina

Personalised recommendations