Advertisement

Sex Roles

, Volume 69, Issue 7–8, pp 363–381 | Cite as

Single-Sex Education and the Brain

  • Lise Eliot
Original Article

Abstract

Of the various rationales for sex-segregated education, the claim that boys and girls should be taught in separate classrooms because their brains differ is arguably the weakest. Existing neuroscience research has identified few reliable differences between boys’ and girls’ brains relevant to learning or education. And yet, prominent single-sex school advocates have convinced many parents and teachers that there exist profound differences between the “male brain” and “female brain” which support the ubiquitous, but equally unfounded belief that “boys and girls learn differently” (Gurian et al. 2001; Sax 2005b; James 2007, 2009; Kaufmann 2007). Educators who cite brain or hormonal research as evidence for boys’ and girls’ different pedagogical needs are often misusing or misconstruing a small number of studies, when the complete data are far more equivocal and of doubtful relevance to classroom instruction. Gender differences in hearing, vision, and autonomic nervous function are modest, with large overlap between boys’ and girls’ measures. Similarly, studies of the neural basis of learning do not support the premise that boys and girls master reading, calculation, or other academic skills differently. Boys and girls have differing interests, but their basic cognitive, emotional and self-regulatory abilities vary far more within each gender than between the average boy and girl. Beyond the issue of scientific misrepresentation, the very logic of segregating children based on inherent anatomical or physiological traits runs counter to the purpose and principles of education.

Keywords

Sex difference Schooling Learning Sensory Hormone Stress 

Notes

Acknowledgements

I am grateful to Peggy Signorella, Diane Halpern, Mark Liberman, and two anonymous reviewers for their helpful comments on the manuscript.

References

  1. Adolphs, R., & Spezio, M. (2006). Role of the amygdala in processing visual social stimuli. Progress in Brain Research, 156, 363–378. doi: 10.1016/S0079-6123(06)56020-0.PubMedGoogle Scholar
  2. Alexander, G. M. (2003). An evolutionary perspective of sex-typed toy preferences: pink, blue, and the brain. Archives of Sexual Behavior, 32, 7–14. doi: 10.1023/A:1021833110722.PubMedGoogle Scholar
  3. Archer, J. (2004). Sex differences in aggression in real-world settings: A meta-analytic review. Review of General Psychology, 8, 291–322. doi: 10.1037/1089-2680.8.4.291.Google Scholar
  4. Begley, S. (1995). Gray matters. Newsweek. Retrieved from http://www.newsweek.com.
  5. Bell, A. D., & Variend, S. (1985). Failure to demonstrate sexual dimorphism of the corpus callosum in childhood. Journal of Anatomy, 143, 143–147.PubMedGoogle Scholar
  6. Benetti, S., McCrory, E., Arulanantham, S., De Sanctis, T., McGuire, P., & Mechelli, A. (2010). Attachment style, affective loss and gray matter volume: A voxel-based morphometry study. Human Brain Mapping, 31, 1482–1489. doi: 10.1002/hbm.20954.PubMedGoogle Scholar
  7. Berninger, E. (2007). Characteristics of normal newborn transient-evoked otoacoustic emissions: Ear asymmetries and sex effects. International Journal of Audiology, 46, 661–669. doi: 10.1080/14992020701438797.PubMedGoogle Scholar
  8. Beshir, M. Y., & Ramsey, J. D. (1981). Comparison between male and female subjective estimates of thermal effects and sensations. Applied Ergonomics, 12, 29–33. doi: 10.1037/0735-7044.112.6.1304.PubMedGoogle Scholar
  9. Bishop, K. M., & Wahlsten, D. (1997). Sex differences in the human corpus callosum: Myth or reality? Neuroscience and Biobehavioral Reviews, 21, 581–601. doi: 10.1016/S0149-7634(96)00049-8.PubMedGoogle Scholar
  10. Bitan, T., Lifshitz, A., Breznitz, Z., & Booth, J. R. (2010). Bidirectional connectivity between hemispheres occurs at multiple levels in language processing but depends on sex. Journal of Neuroscience, 30, 11576–11585. doi: 10.1523/JNEUROSCI.1245-10.2010.PubMedGoogle Scholar
  11. Blair, R. J. (2010). Neuroimaging of psychopathy and antisocial behavior: A targeted review. Current Psychiatry Reports, 12, 76–82. doi: 10.1007/s11920-009-0086-x.PubMedGoogle Scholar
  12. Blankenburg, M., Boekens, H., Hechler, T., Maier, C., Krumova, E., Scherens, A., … Zernikow, B. (2010). Reference values for quantitative sensory testing in children and adolescents: developmental and gender differences of somatosensory perception. Pain, 149, 76–88. doi:10.1016/j.pain.2010.01.011.
  13. Boardingschoolsforgirls.com. (n.d.). Studies of male and female brains show differences in structure, function Retrieved from http://www.boardingschoolsforgirls.com/study-summary-brain-differences.html.
  14. Boatella-Costa, E., Costas-Moragas, C., Botet-Mussons, F., Fornieles-Deu, A., & De Caceres-Zurita, M. L. (2007). Behavioral gender differences in the neonatal period according to the Brazelton scale. Early Human Development, 83, 91–97. doi: 10.1016/j.earlhumdev.2006.05.006.PubMedGoogle Scholar
  15. Bornstein, M. H., Hahn, C.-S., & Haynes, O. M. (2004). Specific and general language performance across early childhood: Stability and gender considerations. First Language, 24, 267–304. doi: 10.1177/0142723704045681.Google Scholar
  16. Brierley, B., Shaw, P., & David, A. S. (2002). The human amygdala: A systematic review and meta-analysis of volumetric magnetic resonance imaging. Brain Research Reviews, 39, 84–105. doi: 10.1016/S0165-0173(02)00160-1.PubMedGoogle Scholar
  17. Buchanan, T. W. (2007). Retrieval of emotional memories. Psychological Bulletin, 133, 761–779. doi: 10.1037/0033-2909.133.5.761.PubMedGoogle Scholar
  18. Burman, D. D., Bitan, T., & Booth, J. R. (2008). Sex differences in neural processing of language among children. Neuropsychologia, 46(5), 1349–1362. doi: 10.1016/j.neuropsychologia.2007.12.021.PubMedGoogle Scholar
  19. Byne, W., Tobet, S., Mattiace, L. A., Lasco, M. S., Kemether, E., Edgar, M. A., … Jones, L. B. (2001). The interstitial nuclei of the human anterior hypothalamus: an investigation of variation with sex, sexual orientation, and HIV status. Hormones and Behavior, 40, 86–92. doi:10.1006/hbeh.2001.1680.
  20. Cahill, L. (2006). Why sex matters for neuroscience. Nature Reviews Neuroscience, 7, 477–484. doi: 10.1038/nrn190.PubMedGoogle Scholar
  21. Chadwell, D. W. (2010a). Gender differences in how boys and girls “process” the world. Retrieved from http://www.chadwellconsulting.com/GD%20Processing.htm.
  22. Chadwell, D. W. (2010b). A gendered choice: Designing and implementing single-sex programs and schools. Thousand Oaks: Corwin.Google Scholar
  23. Chiarello, C., Welcome, S. E., Halderman, L. K., Towler, S., Julagay, J., Otto, R., et al. (2009). A large-scale investigation of lateralization in cortical anatomy and word reading: Are there sex differences? Neuropsychology, 23, 210–222. doi: 10.1037/a0014265.PubMedGoogle Scholar
  24. Clarke, S., Kraftsik, R., Van der Loos, H., & Innocenti, G. M. (1989). Forms and measures of adult and developing human corpus callosum: Is there sexual dimorphism? The Journal of Comparative Neurology, 280, 213–230. doi: 10.1002/cne.902800205.PubMedGoogle Scholar
  25. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001). Age and sex effects in the EEG: Development of the normal child. Clinical Neurophysiology, 112, 806–814. doi: 10.1016/S1388-2457(01)00488-6.PubMedGoogle Scholar
  26. Coley, R. J. (2001). Differences in the gender gap: Comparisons across racial/ethnic groups in education and work. Princeton: Research Division, Policy Information Center, Educational Testing Service.Google Scholar
  27. Corbett, C., Hill, C., & St. Rose, A. (2008). Where the girls are: The facts about gender equity in education. Washington, DC: AAUW Educational Foundation.Google Scholar
  28. Corso, J. (1959). Age and sex differences in pure-tone thresholds. Journal of the Acoustical Society of America, 31, 498–507. doi: 10.1121/1.1907742.Google Scholar
  29. Cosgrove, K. P., Mazure, C. M., & Staley, J. K. (2007). Evolving knowledge of sex differences in brain structure, function, and chemistry. Biological Psychiatry, 62, 847–855. doi: 10.1016/j.biopsych.2007.03.001.PubMedGoogle Scholar
  30. Davis, M., & Emory, E. (1995). Sex differences in neonatal stress reactivity. Child Development, 66, 14–27. doi: 10.1111/j.1467-8624.1995.tb00852.x.PubMedGoogle Scholar
  31. De Vries, G. J. (2004). Minireview: Sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology, 145, 1063–1068. doi: 10.1210/en.2003-1504.PubMedGoogle Scholar
  32. Deak, J. M., & Barker, T. (2002). Girls will be girls: Raising confident and courageous daughters. New York: Hyperion.Google Scholar
  33. DeLacoste-Utamsing, C., & Holloway, R. L. (1982). Sexual dimorphism in the human corpus callosum. Science, 216, 1431–1432. doi: 10.1126/science.7089533.PubMedGoogle Scholar
  34. Eisenegger, C., Naef, M., Snozzi, R., Heinrichs, M., & Fehr, E. (2010). Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature, 463, 356–359. doi: 10.1038/nature08711.PubMedGoogle Scholar
  35. Eldredge, L., & Salamy, A. (1996). Functional auditory development in preterm and full term infants. Early Human Development, 45, 215–228. doi: 10.1016/0378-3782(96)01732-X.PubMedGoogle Scholar
  36. Eliot, L. (2009). Pink brain, blue brain: How small differences grow into troublesome gaps—and what we can do about it. Boston: Houghton Mifflin Harcourt.Google Scholar
  37. Elmlinger, M. W., Kuhnel, W., & Ranke, M. B. (2002). Reference ranges for serum concentrations of lutropin (LH), follitropin (FSH), estradiol (E2), prolactin, progesterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), cortisol and ferritin in neonates, children and young adults. Clinical Chemistry and Laboratory Medicine, 40, 1151–1160. doi: 10.1515/CCLM.2002.202.PubMedGoogle Scholar
  38. Elmlinger, M. W., Kuhnel, W., Wormstall, H., & Doller, P. C. (2005). Reference intervals for testosterone, androstenedione and SHBG levels in healthy females and males from birth until old age. Clinical Laboratory, 51, 625–632.PubMedGoogle Scholar
  39. Epting, L. K., & Overman, W. H. (1998). Sex-sensitive tasks in men and women: A search for performance fluctuations across the menstrual cycle. Behavioral Neuroscience, 112, 1304–1317. doi: 10.1037/0735-7044.112.6.1304.PubMedGoogle Scholar
  40. Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., & Pethick, S. J. (1994). Variability in early communicative development. Monographs of the Society for Research in Child Development, Vol. 59(5, Serial No. 242).Google Scholar
  41. Fernandes, C., Gonzalez, M. I., Wilson, C. A., & File, S. E. (1999). Factor analysis shows that female rat behaviour is characterized primarily by activity, male rats are driven by sex and anxiety. Pharmacology Biochemistry and Behavior, 64, 731–738. doi: 10.1016/S0091-3057(99)00139-2.Google Scholar
  42. Fields, R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends in Neuroscience, 31, 361–370. doi: 10.1016/j.tins.2008.04.001.Google Scholar
  43. Filaire, E., Portier, H., Massart, A., Ramat, L., & Teixeira, A. (2010). Effect of lecturing to 200 students on heart rate variability and alpha-amylase activity. European Journal of Applied Physiology, 108, 1035–1043. doi: 10.1007/s00421-009-1310-4.PubMedGoogle Scholar
  44. Fine, C. (2010). Delusions of gender: How our minds, society, and neurosexism create difference. New York: W.W.Norton.Google Scholar
  45. Finkelstein, J. W., Susman, E. J., Chinchilli, V. M., D’Arcangelo, M. R., Kunselman, S. J., Schwab, J., … Kulin, H. E. (1998). Effects of estrogen or testosterone on self-reported sexual responses and behaviors in hypogonadal adolescents. Journal of Clinical Endocrinology and Metabolism, 83, 2281–2285. doi:10.1210/jc.83.7.2281.
  46. Frassanito, P., & Pettorini, B. (2008). Pink and blue: The color of gender. Child’s Nervous System, 24, 881–882. doi: 10.1007/s00381-007-0559-3.PubMedGoogle Scholar
  47. Freeman, C. E. (2004). Trends in educational equity of girls & women: 2004. Washington, DC: U.S. Department of Education, National Center for Education Statistics.Google Scholar
  48. Frost, J. A., Binder, J. R., Springer, J. A., Hammeke, T. A., Bellgowan, P. S., Rao, S. M., et al. (1999). Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain, 122, 199–208. doi: 10.1093/brain/122.2.199.PubMedGoogle Scholar
  49. Fukuba, Y., Sato, H., Sakiyama, T., Endo, M. Y., Yamada, M., Ueoka, H., … Koga, S. (2009). Autonomic nervous activities accessed by heart rate variability in pre- and post-adolescent Japanese. Journal of Physical Anthropology, 28, 269–273. doi:10.2114/jpa2.28.269 Google Scholar
  50. Garcia-Falgueras, A., & Swaab, D. F. (2008). A sex difference in the hypothalamic uncinate nucleus: Relationship to gender identity. Brain, 131, 3132–3146. doi: 10.1093/brain/awn276.PubMedGoogle Scholar
  51. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., Liu, H., … Castellanos, F. X. (1999). Development of the human corpus callosum during childhood and adolescence: A longitudinal MRI study. Progress in Neuropsychopharmacology & Biological Psychiatry, 23, 571–588. doi:10.1016/S0278-5846(99)00017-2.
  52. Girlslearndifferently.com (n.d.) Girls’ learning styles. Retrieved from www.girlslearndifferently.com.
  53. Gobbini, M. I., & Haxby, J. V. (2007). Neural systems for recognition of familiar faces. Neuropsychologia, 45, 32–41. doi: 10.1016/j.neuropsychologia.2006.04.015.PubMedGoogle Scholar
  54. Golombok, S., & Rust, J. (1993). The pre-school activities inventory: A standardized assessment of gender role in children. Psychological Assessment, 5, 131–136. doi: 10.1037/1040-3590.5.2.131.Google Scholar
  55. Good, C., Aronson, J., & Inzlicht, M. (2003). Improving adolescents’ standardized test performance: An intervention to reduce the effects of stereotype threat. Journal of Applied Developmental Psychology, 24, 645–662. doi: 10.1016/j.appdev.2003.09.002.Google Scholar
  56. Gordon, H. W., & Lee, P. A. (1993). No difference in cognitive performance between phases of the menstrual cycle. Psychoneuroendocrinology, 18, 521–531. doi: 10.1016/0306-4530(93)90045-M.PubMedGoogle Scholar
  57. Gorski, R. A., Gordon, J. H., Shryne, J. E., & Southam, A. M. (1978). Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research, 148, 333–346. doi: 10.1016/0006-8993(78)90723-0.PubMedGoogle Scholar
  58. Goswami, U. (2006). Neuroscience and education: From research to practice? Nature Reviews Neuroscience, 7, 406–413. doi: 10.1038/nrn1907.PubMedGoogle Scholar
  59. GreatSchools. (n.d.). Are boys and girls wired to learn differently? Retrieved from http://www.greatschools.org.
  60. Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Develoment, 58, 539–559. doi: 10.1111/1467-8624.ep7264422.Google Scholar
  61. Gron, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3, 404–408. doi: 10.1038/73980.PubMedGoogle Scholar
  62. Grumbach, M. M. (2002). The neuroendocrinology of human puberty revisited. Hormone Research, 57(Suppl 2), 2–14. doi: 10.1159/000058094.PubMedGoogle Scholar
  63. Grumbach, M. M., & Auchus, R. J. (1999). Estrogen: Consequences and implications of human mutations in synthesis and action. Journal of Clinical Endocrinology and Metabolism, 84, 4677–4694. doi: 10.1210/jc.84.12.4677.PubMedGoogle Scholar
  64. Gupta, R., Koscik, T. R., Bechara, A., & Tranel, D. (2010). The amygdala and decision-making. Neuropsychologia, 49, 760–766. doi: 10.1016/j.neuropsychologia.2010.09.029.PubMedGoogle Scholar
  65. Gurian, M., & Stevens, K. (2004). With boys and girls in mind. Educational Leadership, 62, 21–26.Google Scholar
  66. Gurian, M., Henley, P., & Trueman, T. (2001). Boys and girls learn differently: A guide for teachers and parents. San Francisco: Jossey-Bass.Google Scholar
  67. Gwiazda, J., Bauer, J., & Held, R. (1989). Binocular function in human infants: Correlation of stereoptic and fusion-rivalry discriminations. Journal of Pediatric Ophthalmology and Strabismus, 26, 128–132.PubMedGoogle Scholar
  68. Halpern, D. F., Wai, J., & Saw, A. (2004). A psychobiosocial model: Why females are sometimes greater than and sometimes less than males in male achievement. In A. M. Gallagher & J. C. Kaufman (Eds.), Gender differences in mathematics: An integrative psychological approach (pp. 48–72). Cambridge: Cambridge University Press.Google Scholar
  69. Hampson, E. (1990). Variations in sex-related cognitive abilities across the menstrual cycle. Brain & Cogniton, 14, 26–43. doi: 10.1016/0278-2626(90)90058-V.Google Scholar
  70. Hanlon, H. W., Thatcher, R. W., & Cline, M. J. (1999). Gender differences in the development of EEG coherence in normal children. Developmental Neuropsychology, 16, 479–506. doi: 10.1207/S15326942DN1603_27.Google Scholar
  71. Hausmann, M., Slabbekoorn, D., Van Goozen, S. H., Cohen-Kettenis, P. T., & Gunturkun, O. (2000). Sex hormones affect spatial abilities during the menstrual cycle. Behavioral Neuroscience, 114, 1245–1250. doi: 10.1037/0735-7044.114.6.1245.PubMedGoogle Scholar
  72. Haviland, J. J., & Malatesta, C. Z. (1981). The development of sex differences in nonverbal signals: Fallacies, fact, and fantasies. In C. Mayo & N. Henley (Eds.), Gender and nonverbal behavior (pp. 183–208). New York: Springer.Google Scholar
  73. Haynes, F. J., & Pitteloud, N. (2004). Hypogonadotropic hypogonadism (HH) and gonadotropin therapy. In B. Carr, G. P. Chrousos, L. J. De Groot, I. Goldfine, A. Grossman, J., Hershman, R. McLauchlan, M. I. New, R. Rebar, R. Rushakoff, F. Singer, D. Trence, M. Tschoep & A. Vinik (Eds.), Endotext.org (chapter 5).Google Scholar
  74. Hines, M. (2007). Do sex differences in cognition cause the shortage of women in science? In S. J. Ceci & W. M. Williams (Eds.), Why aren’t more women in science? (pp. 101–112). Washington, DC: American Psychological Association.Google Scholar
  75. Hodes, G. E., & Shors, T. J. (2005). Distinctive stress effects on learning during puberty. Hormones and Behavior, 48, 163–171. doi: 10.1016/j.yhbeh.2005.02.008.PubMedGoogle Scholar
  76. Horvath, T. L., & Wikler, K. C. (1999). Aromatase in developing sensory systems of the rat brain. Journal of Neuroendocrinology, 11, 77–84. doi: 10.1046/j.1365-2826.1999.00285.x.PubMedGoogle Scholar
  77. Hrabovszky, E., Ciofi, P., Vida, B., Horvath, M. C., Keller, E., Caraty, A., … Kallo, I. (2010). The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. European Journal of Neuroscience, 31, 1984–1998. doi:10.1111/j.1460-9568.2010.07239.x.
  78. Huynh, S. C., Wang, X. Y., Rochtchina, E., & Mitchell, P. (2006). Distribution of macular thickness by optical coherence tomography: Findings from a population-based study of 6-year-old children. Investigative Ophthalmology & Visusal Science, 47, 2351–2357. doi: 10.1167/iovs.05-1396.Google Scholar
  79. Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60, 581–592. doi: 10.1037/0003-066X.60.6.581.PubMedGoogle Scholar
  80. Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta-analysis. Psychological Bulletin, 104, 53–69. doi: 10.1037/0033-2909.104.1.53.Google Scholar
  81. Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: A meta-analysis. Psychological Bulletin, 107, 139–155. doi: 10.1037/0033-2909.107.2.139.PubMedGoogle Scholar
  82. Jackson, E. D., Payne, J. D., Nadel, L., & Jacobs, W. J. (2006). Stress differentially modulates fear conditioning in healthy men and women. Biological Psychiatry, 59, 516–522. doi: 10.1016/j.biopsych.2005.08.002.PubMedGoogle Scholar
  83. James, A. N. (2007). Teaching the male brain: How boys think, feel, and learn in school. Thousand Oaks: Corwin.Google Scholar
  84. James, A. N. (2009). Teaching the female brain: How girls learn science and math. Thousand Oaks: Corwin.Google Scholar
  85. Jessop, D. S., & Turner-Cobb, J. M. (2008). Measurement and meaning of salivary cortisol: A focus on health and disease in children. Stress, 11, 1–14. doi: 10.1080/10253890701365527.PubMedGoogle Scholar
  86. Jordan-Young, R. M. (2010). Brain storm: The flaws in the science of sex differences. Cambridge: Harvard University Press.Google Scholar
  87. Kaiser, A., Kuenzli, E., Zappatore, D., & Nitsch, C. (2007). On females’ lateral and males’ bilateral activation during language production: A fMRI study. International Journal of Psychophysiology, 63, 192–198. doi: 10.1016/j.ijpsycho.2006.03.008.PubMedGoogle Scholar
  88. Kansaku, K., Yamaura, A., & Kitazawa, S. (2000). Sex differences in lateralization revealed in the posterior language areas. Cerebral Cortex, 10, 866–872. doi: 10.1093/cercor/10.9.866.PubMedGoogle Scholar
  89. Kaufmann, C. (2007). How boys and girls learn differently. Reader’sDigest.com. Retrieved from http://www.rd.com.
  90. Kling, K. C., Hyde, J. S., Showers, C. J., & Buswell, B. N. (1999). Gender differences in self-esteem: A meta-analysis. Psychological Bulletin, 125, 470–500. doi: 10.1037/0033-2909.125.4.470.PubMedGoogle Scholar
  91. Kolata, G. (1995). Men and women use brain differently, study discovers. The New York Times. Retrieved from http://www.nytimes.com.
  92. Koshi, R., Koshi, T., Jeyaseelan, L., & Vettivel, S. (1997). Morphology of the corpus callosum in human fetuses. Clinical Anatomy, 10, 22–26. doi: 10.1002/(SICI)1098-2353(1997)10:1<22::AID-CA4>3.0.CO;2-V.PubMedGoogle Scholar
  93. Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., & Martin, E. (2008). Development of neural networks for exact and approximate calculation: A FMRI study. Developmental Neuropsychology, 33, 447–473. doi: 10.1080/87565640802101474.PubMedGoogle Scholar
  94. Kuhens, O. (2009). Measuring gender’s role in learning, Knoxville News Sentinel. Retrieved from http://m.knoxnews.com.
  95. Lenroot, R. K., Gogtay, N., Greenstein, D. K, Wells, E.M. Wallace, G. L., Clasen, L. S., … Giedd, J. N. (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36, 1065–1073. doi:10.1016/j.neuroimage.2007.03.053.
  96. Leonard, C. M., Towler, S., Welcome, S., Halderman, L. K., Otto, R., Eckert, M. A., et al. (2008). Size matters: Cerebral volume influences sex differences in neuroanatomy. Cerebral Cortex, 18, 2920–2931. doi: 10.1093/cercor/bhn052.PubMedGoogle Scholar
  97. LeVay, S. (1991). A difference in hypothalamic structure between heterosexual and homosexual men. Science, 253, 1034–1037. doi: 10.1126/science.1887219.PubMedGoogle Scholar
  98. Liben, L. S., Susman, E. J., Finkelstein, J. W., Chinchilli, V. M., Kunselman, S., Schwab, J., … Kulin, H. E. (2002). The effects of sex steroids on spatial performance: a review and an experimental clinical investigation. Developmental Psychology, 38(2), 236–253. doi:10.1037/0012-1649.38.2.236.Google Scholar
  99. Liberman, M. (2006). Neuroscience in the service of sexual stereotypes. Language Log. Retrieved from http://itre.cis.upenn.edu/~myl/languagelog/archives/003419.html.
  100. Liberman, M. (2008a). Liberman on Sax on Liberman on Sax on hearing. Language Log. Retrieved from http://languagelog.ldc.upenn.edu/nll/?p=171.
  101. Liberman, M. (2008b). Retinal sex and sexual rhetoric. Language Log Retrieved from http://languagelog.ldc.upenn.edu/nll/?p=174.
  102. Liu, H., Stufflebeam, S. M., Sepulcre, J., Hedden, T., & Buckner, R. L. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proceedings of the National Academy of Sciences, 106, 20499–20503. doi: 10.1073/pnas.0908073106.Google Scholar
  103. Luders, E., & Toga, A. W. (2010). Sex differences in brain anatomy. Progress in Brain Research, 186, 3–12. doi: 10.1016/B978-0-444-53630-3.00001-4.PubMedGoogle Scholar
  104. Luine, V. N., Beck, K. D., Bowman, R. E., Frankfurt, M., & Maclusky, N. J. (2007). Chronic stress and neural function: Accounting for sex and age. Journal of Neuroendocrinology, 19, 743–751. doi: 10.1111/j.1365-2826.2007.01594.x.PubMedGoogle Scholar
  105. Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford: Stanford University Press.Google Scholar
  106. Maki, P. M., Rich, J. B., & Rosenbaum, R. S. (2002). Implicit memory varies across the menstrual cycle: Estrogen effects in young women. Neuropsychologia, 40, 518–529. doi: 10.1016/S0028-3932(01)00126-9.PubMedGoogle Scholar
  107. Malcolm, C. A., McCulloch, D. L., & Shepherd, A. J. (2002). Pattern-reversal visual evoked potentials in infants: Gender differences during early visual maturation. Developmental Medicine and Child Neurology, 44, 345–351. doi: 10.1111/j.1469-8749.2002.tb00822.x.PubMedGoogle Scholar
  108. McCarthy, M. M., & Arnold, A. P. (2011). Reframing sexual differentiation of the brain. Nature Reviews Neuroscience, 14, 677–683. doi: 10.1038/nn.2834.Google Scholar
  109. McFadden, D. (1998). Sex differences in the auditory system. Developmental Neuropsychology, 14, 261–298. doi: 10.1080/87565649809540712.Google Scholar
  110. McFadden, D. (2008). What do sex, twins, spotted hyenas, ADHD, and sexual orientation have in common? Perspectives on Psychological Science, 3, 309–323. doi: 10.1111/j.1745-6924.2008.00082.x.Google Scholar
  111. McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., … Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342–348. doi:10.1038/nn.2270.
  112. Miles, C., Green, R., & Hines, M. (2006). Estrogen treatment effects on cognition, memory and mood in male-to-female transsexuals. Hormones and Behavior, 50, 708–717. doi: 10.1016/j.yhbeh.2006.06.008.PubMedGoogle Scholar
  113. Molfese, D. L., Key, A. F., Kelly, S., Cunningham, N., Terrell, S., Ferguson, M., … Bonebright, T. (2006). Below-average, average, and above-average readers engage different and similar brain regions while reading. Journal of Learning Disabilities, 39, 352–363. doi:10.1177/00222194060390040801.
  114. Mordecai, K. L., Rubin, L. H., & Maki, P. M. (2008). Effects of menstrual cycle phase and oral contraceptive use on verbal memory. Hormones and Behavior, 54, 286–293. doi: 10.1016/j.yhbeh.2008.03.006.PubMedGoogle Scholar
  115. Morlet, T., Lapillonne, A., Ferber, C., Duclaux, R., Sann, L., Putet, G., … Collet, L. (1995). Spontaneous otoacoustic emissions in preterm neonates: prevalence and gender effects. Hearing Research, 90, 44–54. doi:10.1016/0378-5955(95)00144-4.Google Scholar
  116. Nagamani, M., McDonough, P. G., Ellegood, J. O., & Mahesh, V. B. (1979). Maternal and amniotic fluid steroids throughout human pregnancy. American Journal of Obstetrics and Gynecology, 134, 674–680.PubMedGoogle Scholar
  117. NASSPE. (2004). Brain differences. National Association for Single-Sex Public Education. Retrieved from http://www.genderdifferences.org/research-brain.htm.
  118. NASSPE. (2006–11). Gender differences in the brain. National Association for Single-Sex Public Education.Retrieved from http://www.singlesexschools.org/research-brain.htm.
  119. NASSPE. (2011). Schools. National Association for Single-Sex Public Education. Retrieved from http://www.singlesexschools.org/schools-schools.htm#29.
  120. Ng, W. H., Chan, Y. L., Au, K. S., Yeung, K. W., Kwan, T. F., & To, C. Y. (2005). Morphometry of the corpus callosum in Chinese children: Relationship with gender and academic performance. Pediatric Radiology, 35, 565–571. doi: 10.1007/s00247-004-1336-z.PubMedGoogle Scholar
  121. Nunez, J. L., & Juraska, J. M. (1998). The size of the splenium of the rat corpus callosum: Influence of hormones, sex ratio, and neonatal cryoanesthesia. Developmental Psychobiology, 33, 295–303. doi:10.1002/(SICI)1098-2302(199812)33:4<295::AID-DEV1>3.0.CO;2-L.PubMedGoogle Scholar
  122. OECD. (2009). Equally prepared for life? How 15-year-old boys and girls perform in school. Organization for Economic Cooperation and Development. Retrieved from http://www.sourceoecd.org/education/9789264063945.
  123. Ohman, A. (2005). The role of the amygdala in human fear: Automatic detection of threat. Psychoneuroendocrinology, 30, 953–958. doi: 10.1016/j.psyneuen.2005.03.019.PubMedGoogle Scholar
  124. Paschler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2009). Learning styles: Concepts and evidence. Psychological Science in the Public Interest, 9, 105–119. doi: 10.1111/j.1539-6053.2009.01038.x.Google Scholar
  125. Paus, T. (2010). Sex differences in the human brain: A developmental perspective. Progress in Brain Research, 186, 13–28. doi: 10.1016/B978-0-444-53630-3.00002-6.PubMedGoogle Scholar
  126. Peterzell, D. H., Werner, J. S., & Kaplan, P. S. (1995). Individual differences in contrast sensitivity functions: Longitudinal study of 4-, 6- and 8-month-old human infants. Vision Research, 35, 961–979. doi: 10.1016/0042-6989(94)00117-5.PubMedGoogle Scholar
  127. Pfaff, D., & Keiner, M. (1973). Atlas of estradiol-concentrating cells in the central nervous system of the female rat. The Journal of Comparative Neurology, 151, 121–158. doi: 10.1002/cne.901510204.PubMedGoogle Scholar
  128. Plante, E., Schmithorst, V. J., Holland, S. K., & Byars, A. W. (2006). Sex differences in the activation of language cortex during childhood. Neuropsychologia, 44, 1210–1221. doi: 10.1016/j.neuropsychologia.2005.08.016.PubMedGoogle Scholar
  129. Radfem, N. (2008). Memo to Sax and Gurian. Retrieved from http://nolaradfem.blogspot.com/2008/03/memo-to-sax-and-gurian.html.
  130. Rapp, S. R., Espeland, M. A., Shumaker, S. A., Henderson, V. W., Brunner, R. L., Manson, J. E., … Bowen, D. (2003). Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the Women’s Health Initiative Memory Study: A randomized controlled trial. JAMA, 289, 2663–2672. doi:10.1001/jama.289.20.2663.
  131. Reyes, F. I., Boroditsky, R. S., Winter, J. S., & Faiman, C. (1974). Studies on human sexual development. II. Fetal and maternal serum gonadotropin and sex steroid concentrations. Journal of Clinical Endocrinology and Metabolism, 38, 612–617. doi: 10.1210/jcem-38-4-612.PubMedGoogle Scholar
  132. Ribeiro, F. M., & Carvallo, R. M. (2008). Tone-evoked ABR in full-term and preterm neonates with normal hearing. International Journal of Audiology, 47, 21–29. doi: 10.1080/14992020701643800.PubMedGoogle Scholar
  133. Ripley, A. (2005). Who says a woman can’t be Einstein? Time Magazine. Retrieved from http://www.time.com.
  134. Rodriguez-Carmona, M., Sharpe, L. T., Harlow, J. A., & Barbur, J. L. (2008). Sex-related differences in chromatic sensitivity. Visual Neuroscience, 25, 433–440. doi: 10.1017/S095252380808019X.PubMedGoogle Scholar
  135. Salahu-Din, D., Persky, H., & Miller, J. (2008) The Nation’s Report Card: Writing 2007. National Assessment of Educational Progress at Grades 8 and 12. (NCES 2008–468.) Washington, DC: National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education.Google Scholar
  136. Salyer, D. L., Lund, T. D., Fleming, D. E., Lephart, E. D., & Horvath, T. L. (2001). Sexual dimorphism and aromatase in the rat retina. Developmental Brain Research, 126, 131–136. doi: 10.1016/S0165-3806(00)00147-4.PubMedGoogle Scholar
  137. Sangal, R. B., & Sangal, J. M. (1996). Topography of auditory and visual P300 in normal children. Clinical Electroencephalography, 27, 46–51.PubMedGoogle Scholar
  138. Sarikouch, S., Peters, B., Gutberlet, M., Leismann, B., Kelter-Kloepping, A., Koerperich, H., … Beerbaum, P. (2010). Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circulation: Cardiovascular Imaging, 3, 65–76. doi:10.1161/CIRCIMAGING.109.859074.
  139. Sax, L. (2005a). The promise and peril of single sex public education. Education Week, pp. 48, 34, 35.Google Scholar
  140. Sax, L. (2005b). Why gender matters: What parents and teachers need to know about the emerging science of sex differences. New York: Doubleday.Google Scholar
  141. Sax, L. (2006). Six degrees of separation: What teachers need to know about the emerging science of sex differences. Educational Horizons, 84, 190–200.Google Scholar
  142. Schmid, M., & Largo, R. H. (1986). Visual acuity and stereopsis between the ages of 5 and 10 years. A cross-sectional study. European Journal of Pediatrics, 145, 475–479. doi: 10.1007/BF02429046.PubMedGoogle Scholar
  143. Schmidt, I. M., Molgaard, C., Main, K. M., & Michaelsen, K. F. (2001). Effect of gender and lean body mass on kidney size in healthy 10-year-old children. Pediatric Nephrology, 16, 366–370. doi: 10.1007/s004670100568.PubMedGoogle Scholar
  144. Schrauf, M., Wist, E. R. & Ehrenstein, W. H. (1999). Development of dynamic vision based on motion contrast. Experimental Brain Research, 124, 469–473. doi: 10.1007/s002210050642 Google Scholar
  145. Servin, A., Bohlin, G., & Berlin, L. (1999). Sex differences in 1-, 3-, and 5-year-olds’ toy-choice in a structured play-session. Scandinavian Journal of Psychology, 40, 43–48. doi: 10.1111/1467-9450.00096.PubMedGoogle Scholar
  146. Severiens, S. E., & Ten Dam, G. T. M. (1994). Gender differences in learning styles: A narrative review and quantitative meta-analysis. Higher Education, 27, 487–501. doi: 10.1007/BF01384906.Google Scholar
  147. Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Constable, R. T., Skudlarski, P., Fulbright, R. K., … et al. (1995). Sex differences in the functional organization of the brain for language. Nature, 373, 607–609. doi:10.1038/373607a0.
  148. Sherwin, B. B. (2003). Estrogen and cognitive functioning in women. Endocrine Reviews, 24, 133–151. doi: 10.1210/er.2001-0016.PubMedGoogle Scholar
  149. Shoemaker, J. K., Hogeman, C. S., Khan, M., Kimmerly, D. S., & Sinoway, L. I. (2001). Gender affects sympathetic and hemodynamic response to postural stress. American Journal of Physiology. Heart and Circulatory Physiology, 281, H2028–H2035.PubMedGoogle Scholar
  150. Shors, T. J. (2006). Stressful experience and learning across the lifespan. Annual Review of Psychology, 57, 55–85. doi: 10.1146/annurev.psych.57.102904.190205.PubMedGoogle Scholar
  151. Shors, T. J., Chua, C., & Falduto, J. (2001). Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. Journal of Neuroscience, 21, 6292–6297.PubMedGoogle Scholar
  152. Shumaker, S. A., Legault, C., Kuller, L., Rapp, S. R., Thal, L., Lane, D. S., … Coker, L. H. (2004). Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA, 291, 2947–2958. doi:10.1001/jama.291.24.2947.
  153. Sininger, Y. S., Cone-Wesson, B., & Abdala, C. (1998). Gender distinctions and lateral asymmetry in the low-level auditory brainstem response of the human neonate. Hearing Research, 126, 58–66. doi: 10.1016/S0378-5955(98)00152-X.PubMedGoogle Scholar
  154. Slabbekoorn, D., van Goozen, S. H., Megens, J., Gooren, L. J., & Cohen-Kettenis, P. T. (1999). Activating effects of cross-sex hormones on cognitive functioning: A study of short-term and long-term hormone effects in transsexuals. Psychoneuroendocrinology, 24, 423–447. doi: 10.1016/S0306-4530(98)00091-2.PubMedGoogle Scholar
  155. Sommer, I. E., Aleman, A., Somers, M., Boks, M. P., & Kahn, R. S. (2008). Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Research, 1206, 76–88. doi: 10.1016/j.brainres.2008.01.003.PubMedGoogle Scholar
  156. Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science?: A critical review. American Psychologist, 60, 950–958. doi: 10.1037/0003-066X.60.9.950.PubMedGoogle Scholar
  157. Strahler, J., Mueller, A., Rosenloecher, F., Kirschbaum, C., & Rohleder, N. (2010). Salivary alpha-amylase stress reactivity across different age groups. Psychophysiology, 47, 587–595. doi: 10.1111/j.1469-8986.2009.00957.x.PubMedGoogle Scholar
  158. Strickland, E. A., Burns, E. M., & Tubis, A. (1985). Incidence of spontaneous otoacoustic emissions in children and infants. Journal of the Acoustical Society of America, 78, 931–935. doi: 10.1121/1.392924.PubMedGoogle Scholar
  159. Stuart, A., & Yang, E. Y. (2001). Gender effects in auditory brainstem responses to air- and bone-conducted clicks in neonates. Journal of Communication Disorders, 34, 229–239. doi: 10.1016/S0021-9924(01)00048-X.PubMedGoogle Scholar
  160. Thornton, A. R., Marotta, N., & Kennedy, C. R. (2003). The order of testing effect in otoacoustic emissions and its consequences for sex and ear differences in neonates. Hearing Research, 184, 123–130. doi: 10.1016/S0378-5955(03)00234-X.PubMedGoogle Scholar
  161. Trune, D. R., Mitchell, C., & Phillips, D. S. (1988). The relative importance of head size, gender and age on the auditory brainstem response. Hearing Research, 32, 165–174. doi: 10.1016/0378-5955(88)90088-3.PubMedGoogle Scholar
  162. Tyre, P. (2008). The trouble with boys: A surprising report card on our sons, their problems at school, and what parents and educators must do. New York: Crown.Google Scholar
  163. Van Goozen, S. H., Cohen-Kettenis, P. T., Gooren, L. J., Frijda, N. H., & Van de Poll, N. E. (1995). Gender differences in behaviour: Activating effects of cross-sex hormones. Psychoneuroendocrinology, 20, 343–363. doi: 10.1016/0306-4530(94)00076-X.PubMedGoogle Scholar
  164. van Goozen, S. H., Slabbekoorn, D., Gooren, L. J., Sanders, G., & Cohen-Kettenis, P. T. (2002). Organizing and activating effects of sex hormones in homosexual transsexuals. Behavioral Neuroscience, 116, 982–988. doi: 10.1037//0735-7044.116.6.982.PubMedGoogle Scholar
  165. Van Tilburg, M. A. L., Unterberg, M. L., & Vingerhoets, J. J. M. (2002). Crying during adolescence: The role of gender, menarche, and empathy. British Journal of Developmental Psychology, 20, 77–87.Google Scholar
  166. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270. doi: 10.1037//0033-2909.117.2.250.PubMedGoogle Scholar
  167. Willingham, D. T. (2005). Do visual, auditory, and kinesthetic learners need visual, auditory, and kinesthetic instruction? American Educator, 29(2), 31–35, 44.Google Scholar
  168. Wood, G. E., & Shors, T. J. (1998). Stress facilitates classical conditioning in males, but impairs classical conditioning in females through activational effects of ovarian hormones. Proceedings of the Naional Academy of Sciences, 95, 4066–4071. doi: 10.1073/pnas.95.7.4066.Google Scholar
  169. Wood, A. G., Harvey, A. S., Wellard, R. M., Abbott, D. F., Anderson, V., Kean, M., … Jackson, G. D. (2004). Language cortex activation in normal children. Neurology, 63, 1035–1044. doi:10.1212/01.WNL.0000140707.61952.CA.
  170. Wood, J. L., Heitmiller, D., Andreasen, N. C., & Nopoulos, P. (2008). Morphology of the ventral frontal cortex: Relationship to femininity and social cognition. Cerebral Cortex, 18, 534–540. doi: 10.1093/cercor/bhm079.PubMedGoogle Scholar
  171. Younger, M. R., & Warrington, M. (2006). Would Harry and Herminone have done better in single-sex classes? A review of single-sex teaching within coeducational secondary schools in the United Kingdom. American Educational Research Journal, 43, 579–620. doi: 10.3102/00028312043004579.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Neuroscience, The Chicago Medical SchoolRosalind Franklin University of Medicine & ScienceNorth ChicagoUSA

Personalised recommendations