Advertisement

Scientometrics

, Volume 120, Issue 3, pp 961–974 | Cite as

The relationship between forward and backward diversity in CORE datasets

  • Stephen F. CarleyEmail author
  • Seokbeom Kwon
  • Alan L. Porter
  • Jan L. Youtie
Article

Abstract

In this paper we seek to better understand the relationship between forward diversity in the Cognitive Science and Educational Research literature, as well as what we call Border fields (i.e. those fields which exist at the intersection of Cognitive Science and Education Research). We find a clear and convincing relationship between forward and backward diversity in the datasets we study. Among all available explanatory variables, Integration scores claim the strongest correlation in terms of their ability to account for forward diversity. When comparing results from this study to benchmark results from a prior study (using the same indicators) the datasets in this study show a tendency to be both more integrative and diffuse.

Keywords

Integration Diffusion Interdisciplinarity Education research Cognitive science Border fields 

Notes

Acknowledgements

This work was supported by a grant from the US National Science Foundation, Directorate for Education and Human Resources (DRL-1348765) to A.P. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

References

  1. Autant-Bernard, C., Mairesse, J., & Massard, N. (2007). Spatial knowledge diffusion through collaborative networks. Papers in Regional Science, 86, 341–350.CrossRefGoogle Scholar
  2. Carley, S., & Porter, A. L. (2012). A forward diversity index. Scientometrics, 90(2), 407–427.CrossRefGoogle Scholar
  3. Carley, S., Porter, A. L., Rafols, I., & Leydesdorff, L. (2017). Visualization of disciplinary profiles: Enhanced science overlay maps. Journal of Data and Information Science (JDIS), 2(3), 68–111.  https://doi.org/10.1515/jdis-2017-0015.CrossRefGoogle Scholar
  4. Cassi, L., Mescheba, W., & Turckheim, E. (2014). How to evaluate the degree of interdisciplinarity of an institution? Scientometrics, 101(3), 1871–1895.CrossRefGoogle Scholar
  5. Chen, C., & Hicks, D. (2004). Tracing knowledge diffusion. Scientometrics, 59(2), 199–211.CrossRefGoogle Scholar
  6. Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3(3), 191–209.CrossRefGoogle Scholar
  7. Committee on Facilitating Interdisciplinary Research, of the Committee On Science, Engineering, And Public Policy. (2005). Facilitating interdisciplinary research. Washington, D.C.: National Academies Press.Google Scholar
  8. Garner, J., Porter, A. L., & Newman, N. C. (2014). Distance and velocity measures: Using citations to determine breadth and speed of research impact. Scientometrics, 100(3), 687–703.CrossRefGoogle Scholar
  9. Goldstone, R., & Leydesdorff, L. (2006). The import and export of Cognitive Science. Cognitive Science, 30(6), 983–993.CrossRefGoogle Scholar
  10. Katz J. S., & Hicks, D. (1997). How much is a collaboration worth? A calibrated bibliometric model. In 6th conference of the international society for scientometrics and informetrics. Jerusalem, Israel.Google Scholar
  11. Klein, J. T. (1996). Crossing boundaries: Knowledge, disciplinarities, and interdisciplinarities. Charlottesville, VA: University Press of Virginia.Google Scholar
  12. Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94, 589–593.CrossRefGoogle Scholar
  13. MacGarvie, M. (2005). The determinants of international knowledge diffusion as measured by patent citations. Economics Letters, 87, 121–126.CrossRefGoogle Scholar
  14. Mugabushaka, A. M., Kyriakou, A., & Papazoglou, T. (2016). Bibliometric indicators of interdisciplinarity: The potential of the Leinster–Cobbold diversity indices to study disciplinary diversity. Scientometrics, 107(2), 593–607.CrossRefGoogle Scholar
  15. Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.CrossRefGoogle Scholar
  16. Porter, A. L., Roessner, J. D., & Heberger, A. E. (2008). How interdisciplinary is a given body of research? Research Evaluation, 17(4), 273–282.CrossRefGoogle Scholar
  17. Roessner, D., Porter, A. L., Nersessian, N., & Carley, S. (2013). Validating indicators of interdisciplinarity: Linking bibliometric measures to studies of engineering research labs. Scientometrics, 94(2), 439–468.CrossRefGoogle Scholar
  18. Singh, J. (2005). Collaborative networks as determinants of knowledge diffusion patterns. Management Science, 51, 756–770.CrossRefzbMATHGoogle Scholar
  19. Solomon, G., Carley, S., & Porter, A. L. (2016). How multidisciplinary are the multidisciplinary journals science and nature? PLoS ONE, 11(4), e0152637.  https://doi.org/10.1371/journal.pone.0152637.CrossRefGoogle Scholar
  20. Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14–26.CrossRefGoogle Scholar
  21. Wang, X., Wang, Z., Huang, Y., Chen, Y., Zhang, Y., Ren, H., et al. (2017). Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories. Scientometrics, 111(3), 2023–2039.CrossRefGoogle Scholar
  22. Youtie, J., Solomon, G. E. A., Carley, S., Kwon, S., & Porter, A. L. (2017). Crossing borders: A citation analysis of connections between cognitive science and educational eesearch and the fields in between. Research Evaluation, 26(3), 242–255.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Stephen F. Carley
    • 1
    Email author
  • Seokbeom Kwon
    • 1
    • 2
  • Alan L. Porter
    • 3
  • Jan L. Youtie
    • 4
  1. 1.Search Technology, IncNorcrossUSA
  2. 2.Georgia Institute of TechnologyAtlantaUSA
  3. 3.Enterprise Innovation InstituteGeorgia Institute of TechnologyAtlantaUSA
  4. 4.School of Public PolicyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations