Advertisement

Overview of trends in global epigenetic research (2009–2017)

  • Carlos Olmeda-GómezEmail author
  • Carlos Romá-Mateo
  • Maria-Antonia Ovalle-Perandones
Article

Abstract

Epigenetics, one of the most rapidly intensifying fields of biological research, explores inheritable gene expression not governed by alterations in the DNA sequence. This article analysed the literature on epigenetics published between 2009 and 2017 using qualitative and visualisation techniques. The data were drawn from Clarivate Analytics’ Web of Science Core Collection in January 2018. CiteSpace V software was used to establish an intellectual overview, based on 13,295 scientific articles and review papers. Document co-citations were analysed and a variety of graphics was created. The aim was to define the scope of the field and identify its constituent specialities with automatic procedures based on the keywords and titles in the citing articles in the clusters identified. Ten subspecialities were identified. Field core papers were defined from the co-citation findings, Kleinberg’s burst detection algorithm and the structural variation theory metrics calculated for all the articles selected. The findings can be used to acquire an in-depth view of the patterns and trends in place in the domain and identify innovative and potentially transformational studies.

Keywords

Epigenetics Co-citation analysis Structural variation theory Core documents Knowledge domain CiteSpace 

Notes

Acknowledgements

The authors wish to thank Margaret Clark, translator, for her linguistic support.

References

  1. Agrawal, K., Das, V., Vyas, P., & Hajduch, M. (2018). Nucleosidic DNA demethylating epigenetic drugs—A comprehensive review from discovery to clinic. Pharmacology & therapeutics. pii: S0163, 7258(18), 30031–30037.Google Scholar
  2. Ali, O., Cerjak, D., Kent, J. W., Jr., James, R., Blangero, J., Carless, M. A., et al. (2015). An epigenetic map of age-associated autosomal loci in northern European families at high risk for the metabolic syndrome. Clinical Epigenetics, 7(12), 1–18.Google Scholar
  3. Allis, C. D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 18(8), 487–500.CrossRefGoogle Scholar
  4. Anway, M. D. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308(5727), 1466–1469.CrossRefGoogle Scholar
  5. Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32.CrossRefGoogle Scholar
  6. Bai, Z. T., Bai, B., Zhu, J., Di, C. X., Li, X., & Zhou, W. C. (2018). Epigenetic actions of environmental factors and promising drugs for cancer therapy. Oncology Letters, 15, 2049–2056.Google Scholar
  7. Baylin, S. B., & Jones, P. A. (2016). Epigenetic determinants of cancer. Cold Spring Harbor Perspectives in Biology, 8(9), a019505.CrossRefGoogle Scholar
  8. Bell, G., Hey, T., & Szalay, A. (2009). Beyond the data deluge. Science, 323(6), 1297–1298.CrossRefGoogle Scholar
  9. Bell, J. T., Pai, A. A., Pickrell, J. K., Gaffney, D. J., Pique-Regi, R., Degner, J. F., et al. (2011). DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biology, 12(1), R10.CrossRefGoogle Scholar
  10. Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes and Development, 23, 781–783.CrossRefGoogle Scholar
  11. Bernal, A. J., & Jirtle, R. L. (2010). Epigenomic disruption: The effects of early developmental exposures. Clinical and Molecular Teratology, 88, 938–944.CrossRefGoogle Scholar
  12. Bernstein, B. E., Mikkelsen, T. S., Xie, Xh, Kamai, M., Huebert, D. J., Cuff, J., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2), 315–326.CrossRefGoogle Scholar
  13. Bibikova, M., Barnet, B., Tsan, Ch., Ho, V., Klotzle, B., Le, J. M., et al. (2011). High density DNA methylation array with single CpG site resolution. Genomics, 98(4), 288–295.CrossRefGoogle Scholar
  14. Bjornsson, H. T., Sigurdsson, M. I., Fallin, M. D., Irizarry, R. A., Aspelund, A., Cui, H. M., et al. (2008). Intra-individual change over time in DNA methylation with familial clustering. Journal of the American Medical Association, 299(24), 2877–2883.CrossRefGoogle Scholar
  15. Blondel, V. D., Guillaume, J. L., Lambiote, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanic-Theory and Experiment, 8(10), 10008.CrossRefGoogle Scholar
  16. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255.CrossRefGoogle Scholar
  17. Börner, K., Dall’Asta, L., Ke, W., & Vespignani, A. (2005). Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. Complexity, 10(4), 57–67.CrossRefGoogle Scholar
  18. Börner, K., Klavans, R., Patek, M., Zoss, A. M., Biberstine, J. R., Light, R. P., et al. (2012). Design and update of a classification system: The UCSD map of science. PLOS ONE.  https://doi.org/10.1371/journal.pone.0039464.CrossRefGoogle Scholar
  19. Börner, K., Penumarty, S., Meiss, M., & Ke, W. (2006). Mapping the diffusion of scholarly knowledge among major U.S. research institutions. Scientometrics, 68(3), 415–426.CrossRefGoogle Scholar
  20. Bornmann, L., & Mutz, R. (2015). Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. Journal of the Association for Information Science and Technology, 66(11), 2215–2222.CrossRefGoogle Scholar
  21. Boyack, K. W. (2009). Using detailed maps of science to identify potential collaborations. Scientometrics, 79(1), 27–44.CrossRefGoogle Scholar
  22. Boyack, K. W., Börner, K., & Klavans, R. (2009). Mapping the structure and evolution of chemistry research. Scientometrics, 79(1), 45–60.CrossRefGoogle Scholar
  23. Boyack, K. W., & Klavans, R. (2010). Co-citation analysis. Bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389–2404.CrossRefGoogle Scholar
  24. Boyack, K. W., & Klavans, R. (2014). Creation of a highly detailed, dynamic, global model and map of science. Journal of the Association for Information Science and Technology, 65(4), 670–685.CrossRefGoogle Scholar
  25. Boyer, L. A., Plath, K., Zeitlinger, J., Brambrinck, T., Medeiros, L. A., Lee, T. I., et al. (2006). Polycomb complexex repress developmental regulators in murine embryonic stem cells. Nature, 441, 349–353.CrossRefGoogle Scholar
  26. Braam, R. R., Moed, H. F., & van Raan, A. F. J. (1991). Mapping of science by combined co-citation and word analysis. I. Structural aspects. Journal of the American Society for Information Science, 42(2), 233–251.CrossRefGoogle Scholar
  27. Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163–177.zbMATHCrossRefGoogle Scholar
  28. Brazel, A. J., & Vernimmen, D. (2016). The complexity of epigenetics diseases. Journal of Pathology, 238(2), 333–344.CrossRefGoogle Scholar
  29. Burt, R. S. (2004). Structural holes and good ideas. American Journal of Sociology, 110(2), 349–399.CrossRefGoogle Scholar
  30. Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl. 1), 5303–5310.CrossRefGoogle Scholar
  31. Chen, C. (2005). The centrality of pivotal points in the evolution of scientific networks. In IUI ‘05 proceedings of the 10th international conference on intelligent user interfaces (pp. 98–105). New York: ACM.Google Scholar
  32. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.CrossRefGoogle Scholar
  33. Chen, C. (2012). Predictive effects of structural variation on citation counts. Journal of the American Society for Information Science and Technology, 63(3), 431–449.CrossRefGoogle Scholar
  34. Chen, C. (2016). Grand challenges in measuring and characterizing scholarly impact. Frontiers in Research Metrics and Analytics.  https://doi.org/10.3389/frma.2016.00004.CrossRefGoogle Scholar
  35. Chen, C. (2017). Eugenes Garfield’s scholarly impact: A scientometrics review. Scientometrics, 114(2), 489–516.CrossRefGoogle Scholar
  36. Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409.CrossRefGoogle Scholar
  37. Chen, C., & Leydesdorff, L. (2014). Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. Journal of the Association for Information Science and Technology, 65(2), 334–351.CrossRefGoogle Scholar
  38. Chi, P., Chen, Y., Zhang, L., Guo, J., Wongvipat, J., Shamu, T., et al. (2010). ETV1 is a linear survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature Reviews Cancer, 467, 849–853.Google Scholar
  39. Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., et al. (2009). Lysine Acetylation targets protein complexex and co-regulates major cellular functions. Science, 325(5942), 834–840.CrossRefGoogle Scholar
  40. Clarivate Analytics. (2009). Special topics. Epigenetics. Science Watch, March. http://archive.sciencewatch.com/ana/st/epigen/. Accessed January 28, 2018.
  41. Costas, R., & Bordons, M. (2008). Is g-index better than h-index? An exploratory study at the individual level. Scientometrics, 77(2), 267–288.CrossRefGoogle Scholar
  42. Darvish, H., & Tonta, Y. (2016). Diffusion of nanotechnology knowledge in Turkey and its network structure. Scientometrics, 107(2), 569–592.CrossRefGoogle Scholar
  43. Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: From mechanism to therapy. Cell, 150(1), 12–27.CrossRefGoogle Scholar
  44. Day, J. J., & Sweatt, J. D. (2012). Epigenetic treatments for cognitive impairments. Neuropsychopharmacology, 37(1), 247–260.CrossRefGoogle Scholar
  45. Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–407.CrossRefGoogle Scholar
  46. Dolinoy, D. C., Huang, D., & Jirtle, R. L. (2007). Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proceedings of the National Academy of Sciences of the United States of America, 134(32), 13056–13061.CrossRefGoogle Scholar
  47. Dolinoy, D. C., Weidman, J. R., Waterland, R. A., & Jirtle, R. L. (2006). Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environmental Health Perspectives, 114(4), 567–572.CrossRefGoogle Scholar
  48. Duncan, E. J., Gluckman, P. D., & Dearden, P. K. (2014). Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype. Journal of Experimental Zoology, 322(4), 208–220.CrossRefGoogle Scholar
  49. Dunham, I., & Kundaje, A. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.CrossRefGoogle Scholar
  50. Dunning, T. (1993). Accurate methods for the statistics of surprise and coincidence. Computational Linguistics, 19(1), 61–74.Google Scholar
  51. Eckhardt, F., Lewin, J., Beck, S., et al. (2006). DNA methylation profiling of human chromosomes 6, 20 y 22. Nature Genetics, 38, 1378–1385.CrossRefGoogle Scholar
  52. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.MathSciNetCrossRefGoogle Scholar
  53. Ehlert, T., Simon, P., & Moser, D. A. (2013). Epigenetics in sports. Sports Medicine, 43(2), 93–110.CrossRefGoogle Scholar
  54. Ernst, J., Kherapoud, P., Mikkelsen, T. S., Shoresh, N., Ward, L. D., Epstein, Ch B, et al. (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473, 43–49.CrossRefGoogle Scholar
  55. Esteller, M., Corn, P. G., Baylin, S. B., & Herman, J. G. (2001). A gene hypermethylation profile of human cancer. Cancer Research, 61(8), 3225–3229.Google Scholar
  56. Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143), 433–440.CrossRefGoogle Scholar
  57. Feinberg, A. P. (2018). The key role of epigenetics in human disease prevention and mitigation. The New England Journal of Medicine, 378, 1323–1334.CrossRefGoogle Scholar
  58. Feinberg, A. P., Ohlsson, R., & Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nature Reviews Genetics, 7, 21–33.CrossRefGoogle Scholar
  59. Figueroa, M. E., Abdel-Wahab, O., Lu, C., Ward, P. S., Patel, J., Shih, A., et al. (2010). Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell, 18(6), 553–567.CrossRefGoogle Scholar
  60. Fong, C. Y., Morison, J., & Dawson, M. A. (2014). Epigenetics in the hematologic malignancies. Haematologica, 99(12), 1772–1783.CrossRefGoogle Scholar
  61. Foster, J. G., Rzhetsky, A., & Evans, J. A. (2015). Tradition and innovation in scientists’ research strategies. American Sociological Review, 80(5), 875–908.CrossRefGoogle Scholar
  62. Frommer, M., MacDonald, L. E., Millar, D. S., Collis, C. S., Watt, F., Grigg, G. W., et al. (1992). A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences of the United States of America, 89(5), 1827–1831.CrossRefGoogle Scholar
  63. Gangisetty, O., Cabrera, M. A., & Murugan, S. (2018). Impact of epigenetics in aging and age related neurodegenerative diseases. Frontiers in Bioscience, 23, 1445–1464.CrossRefGoogle Scholar
  64. Garcia-Gimenez, J. L., Seco-Cervera, M., Tollefsbol, T. O., Roma-Mateo, C., Peiro-Chova, L., Lapunzina, P., et al. (2017). Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Critical Reviews in Clinical Laboratory Sciences, 54, 529–550.CrossRefGoogle Scholar
  65. Gardiner-Garden, M., & Fommer, M. (1987). CpG Islands in vertebrate genomes. Journal of Molecular Genomes, 196(2), 261–282.CrossRefGoogle Scholar
  66. Garfield, E., & Sher, I. H. (1993). KeyWords Plus ™—Algorithmic derivative Indexing. Journal of the American Society for Information Science, 44(5), 298–299.CrossRefGoogle Scholar
  67. Gassen, N. C., Chrousos, G. P., Binder, E. B., & Zannas, A. S. (2017). Life stress, glucocorticoid signaling, and the aging epigenome: Implications for aging-related diseases. Neuroscience and Biobehavioral Reviews, 74(part B), 356–365.CrossRefGoogle Scholar
  68. Gaudet, F., Graeme Hodgson, J., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300(5618), 489–492.CrossRefGoogle Scholar
  69. Gensous, N., Bacalini, M. G., Pirazzini, Ch., Marasco, E., Giuliani, C., Ravaioli, F., et al. (2017). The epigenetic landscape of age-related diseases: The geroscience perspective. Biogerontology, 18(4), 549–559.CrossRefGoogle Scholar
  70. Glänzel, W., & Thijs, B. (2017). Using hybrid methods and `core documents’ for the representation of clusters and topics: The astronomy dataset. Scientometrics, 111(2), 1071–1087.CrossRefGoogle Scholar
  71. Gläser, J., Glänzel, W., & Scharnhorst, A. (2017). Same data-different results? Towards a comparative approach to the identification of thematic structures in science. Scientometrics, 111(2), 981–998.CrossRefGoogle Scholar
  72. Griffith, B. C., Small, H. G., Stonehill, J. A., & Drey, S. (1974). The structure of scientific literatures II: Toward a macro and microstructure for science. Science Studies, 4(4), 339–365.CrossRefGoogle Scholar
  73. Guan, J.-S., Haggarty, S. J., Giacometti, E., et al. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459, 55–60.CrossRefGoogle Scholar
  74. Guo, J., Su, Y., Zhong, C., Ming, G. L., & Song, H. (2011). Hydroxilation of 5-methylcitosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145(3), 423–434.CrossRefGoogle Scholar
  75. Hammoud, S. S., Nix, D. A., Zhang, H., Purwar, J., Carrell, D. T., & Cairns, B. R. (2009). Distinctive chromatin in human sperm packages genes for embryo development. Nature, 460(7254), 473–478.CrossRefGoogle Scholar
  76. Hanahan, D., & Winberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.CrossRefGoogle Scholar
  77. He, Y., & Ecker, J. R. (2015). Non-CG methylation in the human genome. Annual Review of Genomics and Human Genetics, 16, 55–77.CrossRefGoogle Scholar
  78. Herceg, Z., & Vaissiere, T. (2011). Epigenetic mechanisms and cancer: An interface between the environment and the genome. Epigenetics, 6(7), 804–819.CrossRefGoogle Scholar
  79. Hodgson, K., Carless, M. A., Kulkarni, H., Curran, J. E., Sprooten, E., Knowles, E. E., et al. (2017). Epigenetic age acceleration assessed with human white-matter images. Journal of Neurosciences, 37(18), 4735–4743.Google Scholar
  80. Hoeksema, M. A., & de Winther, M. P. (2016). Epigenetic regulation of monocyte and macrophage function. Antioxidants and Redox Signal, 25(14), 758–774.CrossRefGoogle Scholar
  81. Holmes, A. (2018). G2B reviews: Epigenetics, epitranscriptomics, microRNAs and more: Emerging approaches to the study of genes, brain and behavior. Genes, Brain, and Behavior, 17, e12453.CrossRefGoogle Scholar
  82. Hu, J., & Zhang, Y. (2017). Discovering the interdisciplinary nature of Big Data research through social network analysis and visualization. Scientometrics, 112(1), 91–109.CrossRefGoogle Scholar
  83. Jankovska, A. M., Millward, C. L., & Caldwell, Ch W. (2015). The potential of DNA modifications as biomarkers and therapeutic targets in oncology. Expert Review of Molecular Diagnostics, 15(10), 1325–1337.CrossRefGoogle Scholar
  84. Jeremias, G., Barbosa, J., Marques, S. M., Asselman, J., Gonçalves, F. J. M., & Pereira, J. L. (2018). Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Molecular Ecology, 27(13), 2790–2806.CrossRefGoogle Scholar
  85. Jones, M. J., Goodman, S. J., & Kobor, M. S. (2015). DNA methylation and healthy human aging. Aging Cell, 14(6), 924–932.CrossRefGoogle Scholar
  86. Joubert, H., Haberg, S. E., Nilsen, R. M., Wang, X. T., Vollser, S. E., Murphy, S. K., et al. (2012). 450 epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environmental Health Perspectives, 120(10), 1425–1431.CrossRefGoogle Scholar
  87. Kaelin, W. G., & McKnight, S. L. (2013). Influence of metabolism on epigenetics and desease. Cell, 153(1), 56–69.CrossRefGoogle Scholar
  88. Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7–15.MathSciNetzbMATHCrossRefGoogle Scholar
  89. Klavans, R., & Boyack, K. W. (2017). Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge. Journal of the American Society for Information Science and Technology, 68(4), 984–998.Google Scholar
  90. Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In Proceedings of of the 8th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 91–101). NewYork: ACM Press.Google Scholar
  91. Kobow, K., & Blümcke, I. (2012). The emerging role of DNA methylation in epileptogenesis. Epilepsia, 53(Suppl. 9), 11–20.CrossRefGoogle Scholar
  92. LeBaron, M. J., Rasoulpour, R. J., Klapacz, J., Ellis-Hutchings, R. G., Hollnagel, H. M., & Gollapudi, B. B. (2010). Epigenetics and chemical safety assessment. Mutation Research/Reviews in Mutation Research, 705(2), 83–95.CrossRefGoogle Scholar
  93. Lee, C. J., Sugimoto, C. R., Zhang, G., & Cronin, B. (2013). Bias in peer review. Journal of the American Society for Information Science and Technology, 64(1), 2–17.CrossRefGoogle Scholar
  94. Lee, T. I., et al. (2006). Control of developmental regulators by polycomb in human embryonic stem cells. Cell, 125(2), 301–313.CrossRefGoogle Scholar
  95. Leydesdorff, L. (2008). On the normalization and visualization of autor co-citation data: Salton’s cosine versus the Jaccard Index. Journal of the American Society for Information Science and Technology, 59(1), 77–85.CrossRefGoogle Scholar
  96. Leydesdorff, L., Bornmann, L., & Wagner, C. S. (2017a). Generating clustered journal maps: An automated system for hierarchical classification. Scientometrics, 110(3), 1601–1614.CrossRefGoogle Scholar
  97. Leydesdorff, L., Carley, S., & Rafols, I. (2013a). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589–593.CrossRefGoogle Scholar
  98. Leydesdorff, L., Kogler, D. F., & Yan, B. (2017b). Mapping patent classifications: Portfolio and statistical analysis, and the comparison of strengths and weaknesses. Scientometrics, 112(3), 1573–1591.CrossRefGoogle Scholar
  99. Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI Subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.CrossRefGoogle Scholar
  100. Leydesdorff, L., Rafols, I., & Chen, C. (2013b). Interactive overlays of journal and the measurement of interdisciplinarity on the basis of aggregated Journal–Journal citations. Journal of the American Society for Information Science and Technology, 64(12), 2573–2586.CrossRefGoogle Scholar
  101. Li, B., Carey, M., & Workman, J. L. (2007). The role of chromatin during transcription. Cell, 128(4), 707–719.CrossRefGoogle Scholar
  102. Li, C. C. Y., Maloney, Ch A, Cropley, J. E., & Suter, C. M. (2010). Epigenetic programming by maternal nutrition: Shaping future generations. Epigenomics, 2(4), 539–549.CrossRefGoogle Scholar
  103. Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, H. A., & Burdge, G. C. (2005). Dietary protein restriction of pregnant rats induces and folic acids supplementations prevents epigenetic modification of hepatic gene expression in the offspring. The Journal Nutrition, 135(6), 1382–1386.CrossRefGoogle Scholar
  104. Liu, S. (2012). Epigenetics advancing personalized nanomedicine in cancer therapy. Advanced Drug Delivery Reviews, 64(13), 1532–1543.CrossRefGoogle Scholar
  105. Liu, Y., Aryee, M. J., Padyukov, L., Fallin, M. D., Hesselberg, E., Runarsson, A., et al. (2013). Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nature Biotechnology, 31, 142–147.CrossRefGoogle Scholar
  106. López, V., Fernández, A. F., & Fraga, M. F. (2017). The role of 5-hydroxymethylcytosine in development, aging and age-related diseases. Ageing Research Reviews, 37(August), 28–38.CrossRefGoogle Scholar
  107. Mane, K. K., & Börner, K. (2004). Mapping topics and topic burst in PNAS. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl. 1), 5287–5290.CrossRefGoogle Scholar
  108. Martin-Subero, J. I., & Esteller, M. (2011). Profiling epigenetic alterations in disease. In E. Ballestar (Ed.), Epigenetic contributions in autoimmune disease. Advances in experimental medicine and biology (pp. 162–178). Boston: Springer.CrossRefGoogle Scholar
  109. Mellen, M., Ayata, P., & Heintz, N. (2017). 5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes. Proceedings of the National Academy of Sciences of the United States of America, 114(37), 7812–7821.CrossRefGoogle Scholar
  110. Metivier, R., Gallais, R., Tiffoche, Ch., Le Peron, Ch., Jurkowska, R. Z., Carmouche, R. P., et al. (2008). Cyclical methylation of a transcriptionally active promoter. Nature, 452, 45–50.CrossRefGoogle Scholar
  111. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., et al. (2007). Genome-wide maps of chromatin state in pluripontent and lineage-committed cells. Nature, 448, 553–560.CrossRefGoogle Scholar
  112. Milojevic, S. (2015). Quantifying the cognitive extent of science. Journal of Informetrics, 9(4), 962–973.CrossRefGoogle Scholar
  113. Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23–38.CrossRefGoogle Scholar
  114. Morgan, H. D., Santos, F., Green, K., Dean, W., & Reik, W. (2005). Epigenetic reprogramming in mammals. Human Molecular Genetics, 14(1), R47–R58.CrossRefGoogle Scholar
  115. Morris, T. F., & Beck, S. (2015). Analysis pipelines and packages for Infinium human methylation450 bead chip (450 k) data. Methods, 72, 3–8.CrossRefGoogle Scholar
  116. Morris, S. A., Yen, G., Wu, Z., & Asnake, B. (2003). Time line visualization of research fronts. Journal of the American Society for Information Science and Technology, 54(5), 413–422.CrossRefGoogle Scholar
  117. Nagy, C., & Turecki, G. (2015). Transgenerational epigenetic inheritance: An open discussion. Epigenomics, 7, 781–790.CrossRefGoogle Scholar
  118. Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In NIPS’01 Proceedings of the 14th international conference on neural information processing systems: Natural and synthetic (pp. 849–856). Cambridge, MA: MIT Press.Google Scholar
  119. Ng, S. F., Lin, R. C., Laybutt, D. R., Barres, R., Owens, J. A., & Morris, M. J. (2010). Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature, 467(7318), 963–966.CrossRefGoogle Scholar
  120. Ong, M.-L., Lin, X., & Holbrook, J. D. (2015). Measuring epigenetics as the mediator of gene/environment interactions in DOHaD. Journal of Developmental Origins of Health and Disease., 6(1), 10–16.CrossRefGoogle Scholar
  121. Paluch, B. E., Naqash, A. R., Brumberger, Z., Nemeth, M. J., & Griffiths, E. A. (2016). Epigenetics: A primer for clinicians. Blood Reviews, 30(4), 285–295.CrossRefGoogle Scholar
  122. Pautasso, M. (2012). Publication growth in biological sub fields: Patterns, predictability and sustainability. Sustainability, 4, 3234–3247.CrossRefGoogle Scholar
  123. Peleg, S., Sananbenesi, F., Zovoilis, A., et al. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 328, 753–756.CrossRefGoogle Scholar
  124. Persson, O. (1994). The intellectual base and research fronts of JASIS 1986-1990. Journal of the American Society for Information Science, 45(1), 31–38.CrossRefGoogle Scholar
  125. Pfeifer, G. P., Xiong, W., Hahn, M. A., & Jin, S.-G. (2014). The role of 5-hydroxymethylcytosine in human cancer. Cell and Tissue Research, 356(3), 631–641.CrossRefGoogle Scholar
  126. Pham, M. T., Rajic, A., Greig, J. D., Sargeant, J. M., Papadopoulus, A., & McEwen, S. A. (2014). A scoping review of scoping reviews: Advancing the approach and enhacing the consistency. Research Synthesis Methods, 5(4), 371–385.CrossRefGoogle Scholar
  127. Price, D. J. S. (1965). Networks of scientific papers. Science, 149(3683), 510–515.CrossRefGoogle Scholar
  128. Pudovkin, A. I., & Garfield, E. (2002). Algorithmic procedure for finding semantically related journals. Journal of the American Society for Information Science and Technology, 53(3), 1113–1119.CrossRefGoogle Scholar
  129. Rainho Bras, O., Cointet, J.-P., Cambrosio, A., David, L., Arriscado Nunes, J., Cardoso, F., et al. (2017). Oncology research in late twentieth century and turn of the century Portugal: A scientometric approach to its institutional and semantic dimensions. Scientometrics, 113(2), 867–888.CrossRefGoogle Scholar
  130. Rakyan, V. K., Down, T. A., Balding, D. J., & Beck, S. (2011). Epigenome-wide association studies for human common diseases. Nature Reviews Genetics, 12, 529–541.CrossRefGoogle Scholar
  131. Ramirez-Prado, J. S., Abulfaraj, A. A., Rayapuram, N., Benhamed, M., & Hirt, H. (2018). Plant immunity: From signaling to epigenetic control of defense. Trends in Plant Science.  https://doi.org/10.1016/j.tplants.2018.06.004.CrossRefGoogle Scholar
  132. Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447(7143), 425–432.CrossRefGoogle Scholar
  133. Reik, W., & Walter, J. (2001). Genomic imprinting: Parental influence on the genome. Nature Review Genetics, 2(1), 21–32.CrossRefGoogle Scholar
  134. Rodriguez-Paredes, M., & Esteller, M. (2011). Cancer epigenetics reaches mainstream oncology. Nature Medicine, 17(3), 330–339.CrossRefGoogle Scholar
  135. Roos, L., van Dongen, J., Bell, Ch G, Burri, A., Deloukas, P., Boomsma, D. I., et al. (2016). Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs. Clinical Epigenetics, 8(7), 1–16.Google Scholar
  136. Rosenfeld, Ch S. (2010). Animal models to study environmental epigenetics. Biology of Reproduction, 82(3), 473–488.CrossRefGoogle Scholar
  137. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.zbMATHCrossRefGoogle Scholar
  138. Roy, D. M., Walsh, L. A., & Chan, T. A. (2014). Driver mutations of cancer epigenomes. Protein and Cell, 5(4), 265–296.CrossRefGoogle Scholar
  139. Sandstrom, P. E. (1994). An optimal foraging approach to information seeking and use. Library Quarterly, 64(4), 414–449.MathSciNetCrossRefGoogle Scholar
  140. Schoofs, T., Berdel, W. E., & Müller-Tidow, C. (2014). Origins of aberrant dna methylation in acute myeloid leukemia. Leukemia, 28, 1–14.CrossRefGoogle Scholar
  141. Schvaneveldt, R. W., Durso, F. T., & Dearholt, D. W. (1989). Network Structures in Proximity Data. In G. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 24, pp. 249–284). New York, NY: Academic Press.Google Scholar
  142. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., et al. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119(7), 941–953.CrossRefGoogle Scholar
  143. Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2009). Comparative study on methods of detecting research fronts using different types of citation. Journal of the American Society for Information Science and Technology, 60(3), 571–580.CrossRefGoogle Scholar
  144. Skvortsova, K., Zotenko, E., Luu, P.-L., Gould, C. M., Nair, S. S., Clark, S. J., et al. (2017). Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenetics and Chromatin, 10(16), 1–20.Google Scholar
  145. Small, H. (2010). Maps of science as interdisciplinary discourse: Cocitation context and the role of analogy. Scientometrics, 83(3), 835–849.CrossRefGoogle Scholar
  146. Small, H., & Griffith, B. C. (1974). The structure of scientific literatures I: identifying and graphing specialties. Science Studies, 4(P.1), 17–40.CrossRefGoogle Scholar
  147. Ŝubelj, L., Bajec, M., Boshkoska, B. M., Kastrin, A., & Levnajić, Z. (2015). Quantifying the consistency of scientific databases. PLoS ONE, 10(5), e0127390.  https://doi.org/10.1371/journal.pone.0127390.CrossRefGoogle Scholar
  148. Ŝubelj, L., van Eck, N. J., & Waltman, L. (2016). Clustering scientific publications based on citation relations: A systematic comparison of different methods. PLoS ONE, 11(4), e0154404.  https://doi.org/10.1371/journal.pone.0154404.CrossRefGoogle Scholar
  149. Takai, D., & Jones, P. A. (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 3740–3745.CrossRefGoogle Scholar
  150. Tejedor, J. R., & Fraga, M. F. (2017). Interindividual epigenetic variability: Sound or noise? BioEssays, 39(7), 1700055.CrossRefGoogle Scholar
  151. Testa, J. (2009). The Thomson Reuters selection process. Transnational Corporations Review, 1(4), 59–66.CrossRefGoogle Scholar
  152. van Noorden, R., Maher, B., & Nuzzo, R. (2014). The top 100 papers. Nature, 514(30), 550–553.CrossRefGoogle Scholar
  153. Vargas-Quesada, B., Chinchilla-Rodríguez, Z., & Rodríguez, N. (2017). Identification and visualization of the intelectual structure in graphene research. Frontiers in Research Metrics and Analytics.  https://doi.org/10.3389/frma.2017.00007.CrossRefGoogle Scholar
  154. Velden, T., Boyack, K. W., Gläser, J., Koopman, R., Scharnhorst, A., & Wang, S. (2017). Comparison of topic extraction approaches and their results. Scientometrics, 111(2), 1169–1221.CrossRefGoogle Scholar
  155. Waddington, C. H. (1942). The epigenotype. Endeavor, 1, 18–20. Reprinted in International Journal Epidemiology, 41(1), 10–13 (2012).Google Scholar
  156. Watanabe, A., Yamada, Y., & Yamanaka, S. (2013). Epigenetic regulation in pluripotent stem cells: A key to breaking the epigenetic barrier. Philosophical Transactions of the Royal Society, 368(1609), 20120292.CrossRefGoogle Scholar
  157. Waterland, R. A., & Jirtle, R. L. (2003). Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23(15), 5293–5300.CrossRefGoogle Scholar
  158. Wolff, G. L., Kodell, R. L., Moore, S. R., & Cooney, C. A. (1998). Maternal epigenetics and methyl supplements affect agouti gene expression in A vy /a mice. Faseb journal, 12, 949–957.CrossRefGoogle Scholar
  159. Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S. H., et al. (2011). Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell, 19(1), 17–30.CrossRefGoogle Scholar
  160. Yang, A. Y., Kim, H., Li, W., & Jong, A.-N. T. (2016). Natural compound-derived epigenetic regulators targeting epigenetic readers, writers and erasers. Current Topics in Medicinal Chemistry, 16(7), 697–713.CrossRefGoogle Scholar
  161. Yao, B., & Jin, P. (2014). Unlocking epigenetic codes in neurogénesis. Genes and Development, 28(12), 1253–1271.CrossRefGoogle Scholar
  162. Zama, A. P., & Uzumcu, M. (2010). Epigenetics effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective. Frontiers in Neuroendocrinology, 31(4), 420–439.CrossRefGoogle Scholar
  163. Zhao, D., & Strotmann, A. (2014). The knowledge base and research front of Information Science 2006–2010: An author co-citation and bibliographic coupling analysis. Journal of the Association for Information Science and Technology, 65(5), 996–1006.Google Scholar
  164. Zhu, Y., Kim, M. C., & Chen, C. (2017). An investigation of the intellectual structure of opinion mining research. Information Research, 22(1), paper 739. http://InformationR.net/ir/22-1/paper739.html. Accessed March 16, 2018.
  165. Zufferey, F., Williams, F. M., & Spector, T. D. (2014). Epigenetics and methylation in the rheumatic diseases. Seminars in Arthritis and Rheumatism, 43(5), 692–700.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Library and Information ScienceCarlos III UniversityMadridSpain
  2. 2.Department Physiology, School of Medicine and DentistryUniversity of ValenciaValenciaSpain
  3. 3.FIHCUV-INCLIVAValenciaSpain
  4. 4.CIBERER, Centro de Investigación Biomédica en Red de Enfermedades RarasValenciaSpain
  5. 5.Epigenetics Research Platform (CIBERER-UV-INCLIVA)ValenciaSpain

Personalised recommendations