Advertisement

Scientometrics

, Volume 119, Issue 2, pp 617–641 | Cite as

Exploration of an interdisciplinary scientific landscape

  • Juste RaimbaultEmail author
Article

Abstract

Patterns of interdisciplinarity in science can be quantified through complementary dimensions. This paper studies as a case study the scientific environment of a generalist journal in Geography, Cybergeo, in order to introduce a novel methodology combining citation network analysis and semantic analysis. We collect a large corpus of around 200,000 articles with their abstracts and the corresponding citation network that provides a first citation classification. Relevant keywords are extracted for each article through text-mining, allowing us to construct a semantic classification. We study the qualitative patterns of relations between endogenous disciplines within each classification, and finally show the complementarity of classifications and of their associated interdisciplinarity measures. The tools we develop accordingly are open and reusable for similar large scale studies of scientific environments. Our contribution therefore provides, besides the methodology, a new way to construct open databases and study journals for which data are difficult to obtain.

Keywords

Citation network Semantic network Interdisciplinarity Geography 

Notes

Acknowledgements

The author would like to thank the editorial board of Cybergeo, and more particularly Denise Pumain and Christine Kosmopoulos, for having offered the opportunity to work on that subject and provided the production database of the journal. The author thanks Denise Pumain for helping with expert geographical knowledge in the naming of communities. The author also thanks two anonymous reviewers which comments were of great value for the paper.

References

  1. Akerlof, G. A., & Michaillat, P. (2018). Persistence of false paradigms in low-power sciences. Proceedings of the National Academy of Sciences, 115(52), 13,228–13,233.Google Scholar
  2. Austin, T. R., Rauch, A., Blau, H., Yudice, G., van Den Berg, S., Robinson, L. S., et al. (1996). Defining interdisciplinarity. Publications of the modern language association of America, 111(2), 271–282.Google Scholar
  3. Bais, S. (2010). In praise of science: Curiosity, understanding, and progress. Cambridge: MIT Press.Google Scholar
  4. Baldwin, T., & Lui, M. (2010). Language identification: The long and the short of the matter. In Human language technologies: The 2010 annual conference of the North American chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp 229–237.Google Scholar
  5. Banos, A. (2013). Pour des pratiques de modélisation et de simulation libérées en géographies et shs. HDR Université Paris 1.Google Scholar
  6. Banos, A., Chasset, P. O., Commenges, H., Cottineau, C., Pumain, D., & Raimbault, J. (2018). A spatialised bibliometrics approach of a scientific journal production. arXiv preprint arXiv:180807282.
  7. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.  https://doi.org/10.1126/science.286.5439.509, URL http://science.sciencemag.org/content/286/5439/509.
  8. Battiston, F., Iacovacci, J., Nicosia, V., Bianconi, G., & Latora, V. (2015). Emergence of multiplex communities in collaboration networks. ArXiv e-prints arXiv:1506.01280.
  9. Bergeaud, A., Potiron, Y., & Raimbault, J. (2017). Classifying patents based on their semantic content. PLoS ONE, 12(4), e0176,310.Google Scholar
  10. Bird, S. (2006). Nltk: The natural language toolkit. In Proceedings of the COLING/ACL on interactive presentation sessions, Association for Computational Linguistics (pp 69–72).Google Scholar
  11. Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: Theory and experiment, 10, P10,008.Google Scholar
  12. Bohannon, J. (2014). Scientific publishing. Google Scholar wins raves—But can it be trusted? Science (New York, NY), 343(6166), 14.Google Scholar
  13. Bonaccorsi, A., & Vargas, J. (2010). Proliferation dynamics in new sciences. Research Policy, 39(8), 1034–1050.Google Scholar
  14. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.Google Scholar
  15. Börner, K., Glänzel, W., Scharnhorst, A., & Van den Besselaar, P. (2011). Modeling science: Studying the structure and dynamics of science. Scientometrics, 89(1), 347–348.Google Scholar
  16. Börner, K., Klavans, R., Patek, M., Zoss, A. M., Biberstine, J. R., Light, R. P., et al. (2012). Design and update of a classification system: The ucsd map of science. PLoS ONE, 7(7), e39,464.Google Scholar
  17. Bourgine, P., Chavalarias, D., & al. (2009). French roadmap for complex systems 2008–2009. ArXiv e-prints, arXiv:0907.2221.
  18. Bouveyron, C., Latouche, P., & Zreik, R. (2018). The stochastic topic block model for the clustering of vertices in networks with textual edges. Statistics and Computing, 28(1), 11–31.MathSciNetzbMATHGoogle Scholar
  19. Boyack, K. W. (2017). Thesaurus-based methods for mapping contents of publication sets. Scientometrics, 111(2), 1141–1155.Google Scholar
  20. Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.Google Scholar
  21. Boyack, K. W., Newman, D., Duhon, R. J., Klavans, R., Patek, M., Biberstine, J. R., et al. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PlOS ONE, 6(3), 1–11.  https://doi.org/10.1371/journal.pone.0018029.Google Scholar
  22. Bracken, L. J. (2016). Interdisciplinarity and geography. New York: Wiley.Google Scholar
  23. Brás, O. R., Cointet, J. P., Cambrosio, A., David, L., Nunes, J. A., Cardoso, F., et al. (2017). Oncology research in late twentieth century and turn of the century portugal: A scientometric approach to its institutional and semantic dimensions. Scientometrics, 113(2), 867–888.Google Scholar
  24. Cardie, C., & Pierce, D. (1998). Error-driven pruning of treebank grammars for base noun phrase identification. In Proceedings of the 17th international conference on Computational linguistics-Volume 1, Association for Computational Linguistics (pp. 218–224).Google Scholar
  25. Chavalarias, D., & Cointet, J. P. (2013). Phylomemetic patterns in science evolution—The rise and fall of scientific fields. PLoS ONE, 8(2), e54,847.Google Scholar
  26. Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, 101(suppl 1), 5303–5310.Google Scholar
  27. Chen, C. (2006). Citespace ii: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for information Science and Technology, 57(3), 359–377.Google Scholar
  28. Chen, S., Arsenault, C., & Larivière, V. (2015). Are top-cited papers more interdisciplinary? Journal of Informetrics, 9(4), 1034–1046.  https://doi.org/10.1016/j.joi.2015.09.003, http://www.sciencedirect.com/science/article/pii/S1751157715300201.
  29. Choi, J., & Hwang, Y. S. (2014). Patent keyword network analysis for improving technology development efficiency. Technological Forecasting and Social Change, 83, 170–182.Google Scholar
  30. Cronin, B., & Sugimoto, C. R. (2014). Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact. Cambridge: MIT Press.Google Scholar
  31. Dupuy, G., & Benguigui, L. G. (2015). Sciences urbaines: Interdisciplinarités passive, naïve, transitive, offensive. Métropoles, 16. https://journals.openedition.org/metropoles/5107.
  32. Edmonds, B., Gilbert, N., Ahrweiler, P., & Scharnhorst, A. (2011). Simulating the social processes of science. Journal of Artificial Societies and Social Simulation, 14(4), 14.Google Scholar
  33. Fecher, B., & Friesike, S. (2014). Open science: One term, five schools of thought. In S. Bartling & S. Friesike (Eds.), Opening science. Cham: Springer.Google Scholar
  34. Gaumont, N., Panahi, M., & Chavalarias, D. (2018). Reconstruction of the socio-semantic dynamics of political activist Twitter networks—Method and application to the 2017 French presidential election. PloS one, 13(9), e0201879.Google Scholar
  35. Gerow, A., Hu, Y., Boyd-Graber, J., Blei, D. M., & Evans, J. A. (2018). Measuring discursive influence across scholarship. In Proceedings of the national academy of sciences (p. 201719792).Google Scholar
  36. Gurciullo, S., Smallegan, M., Pereda, M., Battiston, F., Patania, A., Poledna, S., et al. (2015). Complex politics: A quantitative semantic and topological analysis of UK house of commons debates. ArXiv e-prints, arXiv:1510.03797.
  37. Hall, K. L., Stokols, D., Moser, R. P., Taylor, B. K., Thornquist, M. D., Nebeling, L. C., et al. (2008). The collaboration readiness of transdisciplinary research teams and centers: Findings from the national cancer institute’s trec year-one evaluation study. American Journal of Preventive Medicine, 35(2), S161–S172.Google Scholar
  38. Huutoniemi, K., Klein, J. T., Bruun, H., & Hukkinen, J. (2010). Analyzing interdisciplinarity: Typology and indicators. Research Policy, 39(1), 79–88.Google Scholar
  39. Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS ONE, 9(6), e98679.Google Scholar
  40. Kumar, N., & Srinathan, K. (2008). Automatic keyphrase extraction from scientific documents using n-gram filtration technique. In Proceedings of the eighth ACM symposium on Document engineering (pp 199–208). ACM.Google Scholar
  41. Larivière, V., & Gingras, Y. (2010). On the relationship between interdisciplinarity and scientific impact. Journal of the Association for Information Science and Technology, 61(1), 126–131.Google Scholar
  42. Larivière, V., & Gingras, Y. (2014). Measuring interdisciplinarity. In B. Cronin & C. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (p. 187). Cambridge: MIT Press.Google Scholar
  43. Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the Association for Information Science and Technology, 58(9), 1303–1319.Google Scholar
  44. Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the isi subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.Google Scholar
  45. Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.Google Scholar
  46. Light, R. P., Polley, D. E., & Börner, K. (2014). Open data and open code for big science of science studies. Scientometrics, 101(2), 1535–1551.Google Scholar
  47. Maisonobe, M. (2013). Diffusion et structuration spatiale d’une question de recherche en biologie moléculaire. Mappe Monde, 110(2), 13,202.Google Scholar
  48. Malliaros, F. D., & Vazirgiannis, M. (2013). Clustering and community detection in directed networks: A survey. Physics Reports, 533(4), 95–142.MathSciNetzbMATHGoogle Scholar
  49. Mendeley (2015) Mendeley reference manager. http://www.mendeley.com/.
  50. Moreno, Md C C, Auzinger, T., & Werthner, H. (2016). On the uncertainty of interdisciplinarity measurements due to incomplete bibliographic data. Scientometrics, 107(1), 213–232.Google Scholar
  51. Mugabushaka, A. M., Kyriakou, A., & Papazoglou, T. (2016). Bibliometric indicators of interdisciplinarity: The potential of the leinster-cobbold diversity indices to study disciplinary diversity. Scientometrics, 107(2), 593–607.Google Scholar
  52. Nature (2015). Interdisciplinarity, nature special issue. Nature, 525(7569), 289–418.Google Scholar
  53. Newman, M. (2014). Prediction of highly cited papers. EPL (Europhysics Letters), 105(2), 28,002.Google Scholar
  54. Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.MathSciNetzbMATHGoogle Scholar
  55. Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.Google Scholar
  56. Nichols, L. G. (2014). A topic model approach to measuring interdisciplinarity at the national science foundation. Scientometrics, 100(3), 741–754.MathSciNetGoogle Scholar
  57. Noruzi, A. (2005). Google scholar: The new generation of citation indexes. Libri, 55(4), 170–180.Google Scholar
  58. Omodei, E., De Domenico, M., & Arenas, A. (2017). Evaluating the impact of interdisciplinary research: A multilayer network approach. Network Science, 5(2), 235–246.Google Scholar
  59. Palchykov, V., Gemmetto, V., Boyarsky, A., & Garlaschelli, D. (2016). Ground truth? Concept-based communities versus the external classification of physics manuscripts. EPJ Data Science, 5(1), 28.Google Scholar
  60. Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.Google Scholar
  61. Porter, A., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.Google Scholar
  62. Pumain, D. (2005). Cumulativité des connaissances. Revue européenne des sciences sociales. European Journal of Social Sciences, 43(131), 5–12.Google Scholar
  63. Pumain, D. (2015). Adapting the model of scientific publishing. Cybergeo: European Journal of Geography. https://journals.openedition.org/cybergeo/26957.
  64. Rafols, I., & Meyer, M. (2009). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.Google Scholar
  65. Raimbault, J. (2016). Torpool v1.0,  https://doi.org/10.5281/zenodo.53739.
  66. Raimbault, J. (2017). An applied knowledge framework to study complex systems. In A. Chapoutout, D. Krob, A. Roussel & F. Stephan (Eds.), Complex systems design & management (pp. 31–45). Paris: CESAMES.Google Scholar
  67. Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B-Condensed Matter and Complex Systems, 4(2), 131–134.Google Scholar
  68. Rinia, E., van Leeuwen, T., & van Raan, A. (2002). Impact measures of interdisciplinary research in physics. Scientometrics, 53(2), 241–248.Google Scholar
  69. Rodríguez, J. M. (2017). Disciplinarity and interdisciplinarity in citation and reference dimensions: Knowledge importation and exportation taxonomy of journals. Scientometrics, 110(2), 617–642.Google Scholar
  70. Roth, C., & Cointet, J. P. (2010). Social and semantic coevolution in knowledge networks. Social Networks, 32(1), 16–29.Google Scholar
  71. Rouse, W. B., Lombardi, J. V., & Craig, D. D. (2018). Modeling research universities: Predicting probable futures of public vs. private and large vs. small research universities. Proceedings of the National Academy of Sciences, 115(50), 12,582–12,589.Google Scholar
  72. Sarigöl, E., Pfitzner, R., Scholtes, I., Garas, A., & Schweitzer, F. (2014). Predicting scientific success based on coauthorship networks. EPJ Data Science, 3(1), 9.Google Scholar
  73. Scharnhorst, A., Börner, K., & van den Besselaar, P. (2012). Models of science dynamics: Encounters between complexity theory and information sciences. Berlin: Springer.Google Scholar
  74. Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In Proceedings of the international conference on new methods in language processing (Vol. 12, pp. 44–49). Citeseer.Google Scholar
  75. Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758–775.Google Scholar
  76. Szell, M., Ma, Y., & Sinatra, R. (2018). A nobel opportunity for interdisciplinarity. Nature Physics, 14(11), 1075–1078.Google Scholar
  77. Trajanovski, S., Martín-Hernández, J., Winterbach, W., & Van Mieghem, P. (2013). Robustness envelopes of networks. Journal of Complex Networks, 1(1), 44–62.Google Scholar
  78. Vugteveen, P., Lenders, R., & Van Den Besselaar, P. (2014). The dynamics of interdisciplinary research fields: The case of river research. Scientometrics, 100(1), 73–96.Google Scholar
  79. Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (idr): A review of the literature. Journal of Informetrics, 5(1), 14–26.Google Scholar
  80. Wen, B., Horlings, E., van der Zouwen, M., & Van den Besselaar, P. (2017). Mapping science through bibliometric triangulation: An experimental approach applied to water research. Journal of the Association for Information Science and Technology, 68(3), 724–738.Google Scholar
  81. West, G. (2017). Scale: The universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies. London: Penguin.Google Scholar
  82. Wicherts, J. M. (2016). Peer review quality and transparency of the peer-review process in open access and subscription journals. PLoS ONE, 11(1), e0147,913.  https://doi.org/10.1371/journal.pone.0147913.MathSciNetGoogle Scholar
  83. Zhang, L., Janssens, F., Liang, L., & Glänzel, W. (2010). Journal cross-citation analysis for validation and improvement of journal-based subject classification in bibliometric research. Scientometrics, 82(3), 687–706.Google Scholar
  84. Zhang, L., Rousseau, R., & Glänzel, W. (2016). Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of the Association for Information Science and Technology, 67(5), 1257–1265.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.UMR CNRS 8504 Géographie-citésParisFrance
  2. 2.UMR-T IFSTTAR 9403 LVMTChamps-sur-marneFrance

Personalised recommendations