, Volume 119, Issue 1, pp 379–391 | Cite as

A few notes on main path analysis

  • John S. LiuEmail author
  • Louis Y. Y. Lu
  • Mei Hsiu-Ching Ho


The last few years have seen a growing interest in main path analysis among scholars across a wide spectrum of disciplines. Hummon and Doreian first introduced this method, and it has since become an effective technique for mapping technological trajectories, exploring scientific knowledge flows, and conducting literature reviews. Nevertheless, there are issues not broadly discussed in applying the method, including the handling of citation data, choosing a proper traversal weight scheme, search options, and interpretation of the resulting paths. This note aims to deepen the discussions and concludes with several suggestions and strategies in applying main path analysis.


Main path analysis Citation networks Bibliometric analysis 



We thank two anonymous reviewers for their constructive comments which have greatly improved the accuracy and readability of this article. This work is partially supported by Taiwan's Ministry of Science and Technology grants MOST 105-2410-H-011-021-MY3, 107-2410-H-155-046, and 106-2410-H-011-028-MY2.


  1. Aksnes, D. W. (2003). A macro study of self-citation. Scientometrics, 56(2), 235–246.CrossRefGoogle Scholar
  2. Barberá-Tomás, D., Jiménez-Sáez, F., & Castelló-Molina, I. (2011). Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks. Research Policy, 40(3), 473–486.CrossRefGoogle Scholar
  3. Batagelj, V. (2003). Efficient algorithms for citation network analysis. In Preprint series, University of Ljubljana, Institute of Mathematics, Physics and Mechanics, Department of Theoretical Computer Science.Google Scholar
  4. Batagelj, V., Ferligoj, A., & Squazzoni, F. (2017). The emergence of a field: a network analysis of research on peer review. Scientometrics, 113(1), 503–532.CrossRefGoogle Scholar
  5. Batagelj, V., & Mrvar, A. (1998). Pajek-program for large network analysis. Connections, 21(2), 47–57.zbMATHGoogle Scholar
  6. Bekkers, R., & Martinelli, A. (2012). Knowledge positions in high-tech markets: Trajectories, standards, strategies and true innovators. Technological Forecasting and Social Change, 79(7), 1192–1216.CrossRefGoogle Scholar
  7. Bhupatiraju, S., Nomaler, Ö., Triulzi, G., & Verspagen, B. (2012). Knowledge flows: Analyzing the core literature of innovation, entrepreneurship and science and technology studies. Research Policy, 41(7), 1205–1218.CrossRefGoogle Scholar
  8. Brysbaert, M., & Smyth, S. (2011). Self-enhancement in scientific research: The self-citation bias. Psychologica Belgica, 51(2), 129–137.CrossRefGoogle Scholar
  9. Calero-Medina, C., & Noyons, E. C. (2008). Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field. Journal of Informetrics, 2(4), 272–279.CrossRefGoogle Scholar
  10. Chuang, T. C., Liu, J. S., Lu, L. Y., Tseng, F.-M., Lee, Y., & Chang, C.-T. (2017). The main paths of eTourism: Trends of managing tourism through Internet. Asia Pacific Journal of Tourism Research, 22(2), 213–231.CrossRefGoogle Scholar
  11. Colicchia, C., & Strozzi, F. (2012). Supply chain risk management: A new methodology for a systematic literature review. Supply Chain Management: An International Journal, 17(4), 403–418.CrossRefGoogle Scholar
  12. Consoli, D., & Mina, A. (2009). An evolutionary perspective on health innovation systems. Journal of Evolutionary Economics, 19(2), 297.CrossRefGoogle Scholar
  13. De Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. De Nooy, W., Mrvar, A., & Batagelj, V. (2018). Exploratory social network analysis with Pajek (3rd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Epicoco, M. (2013). Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory. Research Policy, 42(1), 180–195.CrossRefGoogle Scholar
  16. Fontana, R., Nuvolari, A., & Verspagen, B. (2009). Mapping technological trajectories as patent citation networks. An application to data communication standards. Economics of Innovation and New Technology, 18(4), 311–336.CrossRefGoogle Scholar
  17. Glänzel, W., Debackere, K., Thijs, B., & Schubert, A. (2006). A concise review on the role of author self-citations in information science, bibliometrics and science policy. Scientometrics, 67(2), 263–277.CrossRefGoogle Scholar
  18. Glänzel, W., & Thijs, B. (2004). The influence of author self-citations on bibliometric macro indicators. Scientometrics, 59(3), 281–310.CrossRefGoogle Scholar
  19. Harris, J. K., Beatty, K. E., Lecy, J. D., Cyr, J. M., & Shapiro, R. M. (2011). Mapping the multidisciplinary field of public health services and systems research. American Journal of Preventive Medicine, 41(1), 105–111.CrossRefGoogle Scholar
  20. Ho, J. C., Saw, E.-C., Lu, L. Y., & Liu, J. S. (2014). Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technological Forecasting and Social Change, 82, 66–79.CrossRefGoogle Scholar
  21. Ho, M. H.-C., Liu, J. S., & Chang, K. C.-T. (2017). To include or not: the role of review papers in citation-based analysis. Scientometrics, 110(1), 65–76.CrossRefGoogle Scholar
  22. Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39–63.CrossRefGoogle Scholar
  23. Hung, S.-C., Liu, J. S., Lu, L. Y., & Tseng, Y.-C. (2014). Technological change in lithium iron phosphate battery: The key-route main path analysis. Scientometrics, 100(1), 97–120.CrossRefGoogle Scholar
  24. Hyland, K. (2003). Self-citation and self-reference: Credibility and promotion in academic publication. Journal of the American Society for Information Science and Technology, 54(3), 251–259.CrossRefGoogle Scholar
  25. Kim, J., & Shin, J. (2018). Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures. Scientometrics, 116(3), 1439–1459.MathSciNetCrossRefGoogle Scholar
  26. Liu, J. S., Chen, H. H., Ho, M. H. C., & Li, Y. C. (2014). Citations with different levels of relevancy: Tracing the main paths of legal opinions. Journal of the Association for Information Science and Technology, 65(12), 2479–2488.CrossRefGoogle Scholar
  27. Liu, J. S., & Lu, L. Y. (2012). An integrated approach for main path analysis: Development of the Hirsch index as an example. Journal of the Association for Information Science and Technology, 63(3), 528–542.Google Scholar
  28. Liu, J. S., Lu, L. Y., & Lu, W.-M. (2016). Research fronts in data envelopment analysis. Omega, 58, 33–45.CrossRefGoogle Scholar
  29. Liu, J. S., Lu, L. Y., Lu, W.-M., & Lin, B. J. (2013a). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega, 41(1), 3–15.CrossRefGoogle Scholar
  30. Liu, J. S., Lu, L. Y., Lu, W.-M., & Lin, B. J. (2013b). A survey of DEA applications. Omega, 41(5), 893–902.CrossRefGoogle Scholar
  31. Lu, L. Y., Lan, Y., & Liu, J. S. (2012). A novel approach for exploring technological development trajectories. In: 2012 IEEE International Conference on Management of Innovation and Technology (ICMIT) (pp. 504–509). IEEE.Google Scholar
  32. Lu, L. Y., & Liu, J. S. (2013). An innovative approach to identify the knowledge diffusion path: The case of resource-based theory. Scientometrics, 94(1), 225–246.MathSciNetCrossRefGoogle Scholar
  33. Lu, L. Y., & Liu, J. S. (2016). A novel approach to identify the major research themes and development trajectory: The case of patenting research. Technological Forecasting and Social Change, 103, 71–82.CrossRefGoogle Scholar
  34. Lucio-Arias, D., & Leydesdorff, L. (2008). Main-path analysis and path-dependent transitions in HistCite™-based historiograms. Journal of the Association for Information Science and Technology, 59(12), 1948–1962.Google Scholar
  35. MacRoberts, M. H., & MacRoberts, B. R. (1989). Problems of citation analysis: A critical review. Journal of the American Society for information Science, 40(5), 342–349.CrossRefGoogle Scholar
  36. MacRoberts, M. H., & MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36(3), 435–444.CrossRefGoogle Scholar
  37. Martinelli, A. (2012). An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry. Research Policy, 41(2), 414–429.CrossRefGoogle Scholar
  38. Mina, A., Ramlogan, R., Tampubolon, G., & Metcalfe, J. S. (2007). Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Research Policy, 36(5), 789–806.CrossRefGoogle Scholar
  39. OuYang, K., Weng, C. S. J. T. F., & Change, S. (2011). A new comprehensive patent analysis approach for new product design in mechanical engineering. Technological Forecasting and Social Change, 78(7), 1183–1199.CrossRefGoogle Scholar
  40. Tu, Y. N., & Hsu, S. L. (2016). Constructing conceptual trajectory maps to trace the development of research fields. Journal of the Association for Information Science and Technology, 67(8), 2016–2031.CrossRefGoogle Scholar
  41. Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(01), 93–115.CrossRefzbMATHGoogle Scholar
  42. Yeo, W., Kim, S., Lee, J.-M., & Kang, J. (2014). Aggregative and stochastic model of main path identification: A case study on graphene. Scientometrics, 98(1), 633–655.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • John S. Liu
    • 1
    Email author
  • Louis Y. Y. Lu
    • 2
  • Mei Hsiu-Ching Ho
    • 1
  1. 1.Graduate Institute of Technology ManagementNational Taiwan University of Science and TechnologyTaipeiTaiwan
  2. 2.College of ManagementYuan Ze UniversityTaoyuanTaiwan

Personalised recommendations