The Brazilian academic genealogy: evidence of advisor–advisee relationships through quantitative analysis

  • Rafael J. P. DamacenoEmail author
  • Luciano Rossi
  • Rogério Mugnaini
  • Jesús P. Mena-Chalco


Science can be examined from several standpoints, such as through a bibliometric analysis of the scientific output of researchers, research groups or institutions. However, there is little information about the advisor–advisee relationships or the academic supervision of researchers or between teachers and students. In this paper, we examine the results of the academic genealogy of PhD and Master’s students working in Brazil, which was obtained from 737,919 curriculum vitae extracted from the Lattes Platform. Our findings bring to light three main sources of evidence related to the Brazilian academic genealogy: (1) the degree of interdisciplinarity between main areas of knowledge, (2) the structural features and evolving patterns with regard to both areas of knowledge and researchers, and (3) the patterns in the levels of training that affect the topological metrics. We conclude that academic genealogy offers a great opportunity to assess researchers and their areas of research from the perspective of human resource training.


Academic genealogy Mentoring Network analysis Graphs 



The authors would like to thank the Federal University of ABC for its financial support.


  1. Bennett, A. F., & Lowe, C. (2005). The academic genealogy of George A. Bartholomew. Integrative and Comparative Biology, 45(2), 231–233.CrossRefGoogle Scholar
  2. Center for Strategic Studies and Management Science, Technology and Innovation. (2016). Doutores 2015: Estudos da demografia da base técnico-científica brasileira. Brasília, DF: Centro de Gestão e Estudos Estratégicos.Google Scholar
  3. Chariker, J. H., Zhang, Y., Pani, J. R., & Rouchka, E. C. (2017). Identification of successful mentoring communities using network-based analysis of mentor–mentee relationships across nobel laureates. Scientometrics, 111(3), 1733–1749.CrossRefGoogle Scholar
  4. Damaceno, R. J. P., Rossi, L., & Mena-Chalco, J. P. (2017). Identificação do grafo de genealogia acadêmica de pesquisadores: Uma abordagem baseada na plataforma Lattes. In Proceedings of the 32nd Brazilian symposium on databases (pp. 76–87).Google Scholar
  5. David, S. V., & Hayden, B. Y. (2012). Neurotree: A collaborative, graphical database of the academic genealogy of neuroscience. PLoS ONE, 7(10), e46608.CrossRefGoogle Scholar
  6. Dores, W., Soares, E., Benevenuto, F., & Laender, A. H. F. (2017). Building the Brazilian academic genealogy tree. In J. Kamps, G. Tsakonas, Y. Manolopoulos, L. Iliadis, & I. Karydis (Eds.), Research and advanced technology for digital libraries (pp. 537–543). Berlin: Springer.CrossRefGoogle Scholar
  7. Elias, M., Floeter-Winter, L. M., & Mena-Chalco, J. P. (2016). The dynamics of Brazilian protozoology over the past century. Memórias do Instituto Oswaldo Cruz, 111(1), 67–74.CrossRefGoogle Scholar
  8. Heinisch, D. P., & Buenstorf, G. (2018). The next generation (plus one): An analysis of doctoral students’ academic fecundity based on a novel approach to advisor identification. Scientometrics, 177, 351–380.CrossRefGoogle Scholar
  9. Jackson, A. (2007). A labor of love: The mathematics genealogy project. Notices of the American Mathematical Society, 54(8), 1002–1003.Google Scholar
  10. Kelley, E. A., & Sussman, R. W. (2007). An academic genealogy on the history of American field primatologists. American Journal of Physical Anthropology, 132(3), 406–425.CrossRefGoogle Scholar
  11. Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady, 10, 707.MathSciNetGoogle Scholar
  12. Li, Y., Fang, N., Liu, Z., & Yu, H. (2017). Inferring advisor–student relationships from publication networks based on approximate maxconfidence measure. Mathematical Problems in Engineering. Scholar
  13. Liu, J., Tang, T., Kong, X., Tolba, A., AL-Makhadmeh, Z., & Xia, F. (2018). Understanding the advisor–advisee relationship via scholarly data analysis. Scientometrics, 116(1), 161–180.CrossRefGoogle Scholar
  14. Malmgren, R. D., Ottino, J. M., & Amaral, L. A. N. (2010). The role of mentorship in protégé performance. Nature, 465(7298), 622–626.CrossRefGoogle Scholar
  15. Martin, S., Brown, W. M., Klavans, R., & Boyack, K. W. (2011). Openord: An open-source toolbox for large graph layout. In SPIE proceedings—Visualization and data analysis 2011 (Vol. 7868, pp. 786–806). International Society for Optics and Photonics.Google Scholar
  16. Mena-Chalco, J. P., Digiampietri, L. A., Lopes, F. M., & Cesar Jr., R. M. (2014). Brazilian bibliometric coauthorship networks. Journal of the Association for Information Science and Technology, 65(7), 1424–1445.CrossRefGoogle Scholar
  17. Montoye, H. J., & Washburn, R. (1980). Research quarterly contributors: An academic genealogy. Research Quarterly for Exercise and Sport, 51(1), 261–266.CrossRefGoogle Scholar
  18. Rossi, L., Damaceno, R. J. P., Freire, I. L., Bechara, E. J. H., & Mena-Chalco, J. P. (2018). Topological metrics in academic genealogy graphs. Journal of Informetrics, 12(4), 1042–1058.CrossRefGoogle Scholar
  19. Rossi, L., Freire, I. L., & Mena-Chalco, J. P. (2017). Genealogical index: A metric to analyze advisor–advisee relationships. Journal of Informetrics, 11(2), 564–582.CrossRefGoogle Scholar
  20. Rossi, L., & Mena-Chalco, J. P. (2014). Caracterização de árvores de genealogia acadêmica por meio de métricas em grafos. In Brazilian workshop on social network analysis and mining (pp. 1–12).Google Scholar
  21. Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41(1), 643–681.CrossRefGoogle Scholar
  22. Sugimoto, C. R. (2014). Academic genealogy. In B. Cronin & C. R. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (first ed., pp. 365–382). Cambridge: MIT Press.Google Scholar
  23. Sugimoto, C. R., Ni, C., Russell, T. G., & Bychowski, B. (2011). Academic genealogy as an indicator of interdisciplinarity: An examination of dissertation networks in library and information science. Journal of the American Society for Information Science and Technology, 62(9), 1808–1828.CrossRefGoogle Scholar
  24. Tuesta, E. F., Delgado, K. V., Mugnaini, R., Digiampietri, L. A., Mena-Chalco, J. P., & Pérez-Alcázar, J. J. (2015). Analysis of an advisor–advisee relationship: An exploratory study of the area of exact and earth sciences in Brazil. PLoS ONE, 10(5), e0129065.CrossRefGoogle Scholar
  25. Vanz, A. S. S., & Stumpf, I. R. C. (2010). Colaboração científica: revisão teórico-conceitual. Perspectivas em Ciência da Informação, 15(2), 42–55.CrossRefGoogle Scholar
  26. Wang, C., Han, J., Jia, Y., Tang, J., Zhang, D., Yu, Y., & Guo, J. (2010). Mining advisor–advisee relationships from research publication networks. In Proceedings of the 16th international conference on knowledge discovery and data mining (pp. 203–212). ACM.Google Scholar
  27. Wang, W., Liu, J., Xia, F., King, I., & Tong, H. (2017). Shifu: Deep learning based advisor–advisee relationship mining in scholarly big data. In Proceedings of the 26th international conference on World Wide Web companion (pp. 303–310). International World Wide Web Conferences Steering Committee.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Rafael J. P. Damaceno
    • 1
    Email author
  • Luciano Rossi
    • 1
  • Rogério Mugnaini
    • 2
  • Jesús P. Mena-Chalco
    • 1
  1. 1.Center for Mathematics, Computation and CognitionFederal University of ABCSanto AndreBrazil
  2. 2.School of Communication and ArtsUniversity of São PauloSão PauloBrazil

Personalised recommendations