Competing, complementary and co-existing paradigms in techno-scientific literature: A case study of Nanotechnology for engineering

  • Thara PrabhakaranEmail author
  • Hiran H. Lathabai
  • Susan George


Nanotechnology is a research field that has potential to drive the progress of mankind for the next few decades. Its application is found in every discipline, ranging from material science to space communication. Owing to its potential for ubiquity, and capability of replacing many general purpose technologies, co-existence of several paradigms are expected in nanotechnology. Flow Vergence (FV) gradient has been recently introduced as a metric to mine the network of scientific literature for detecting the paradigm shifts. In this paper, we have performed citation network analysis of scientific publications in nanotechnology from research area ‘engineering’ for identification of paradigms related to the same. Flow vergence gradient revealed 18 subnetworks that deal with 25 likely pivots of paradigm shifts. Major paradigm shifts can be found in the field of targeted drug delivery. Nanonetworks, a crossover of IT, BT and nanotechnology is the another interesting paradigm shift identified. An extended subnetwork analysis has been conducted to identify the competing or complementary nature of the emerging paradigms in the subnetworks. A framework for this has also been introduced. This analysis revealed that most of the paradigms in the targeted delivery are competing paradigms. Complementary paradigms are also identified in nano electronics and targeted drug delivery. Policy implications from this identification for various target groups are also discussed.


Citation networks Paradigms Co-existing paradigms Flow Vergence effect Nanotechnology Engineering 



This work used facility provided by ‘Scientometric lab’ (Order No. Pl.A1/Annual plan 16-17/Imp.plan/16 dtd. 29/11/2016), Department of Futures Studies, University of Kerala.


  1. Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.CrossRefGoogle Scholar
  2. Akyildiz, I. F., & Jornet, J. M. (2010). The internet of nano-things. IEEE Wireless Communications, 17(6), 58–63.CrossRefGoogle Scholar
  3. Allarakhia, M., & Walsh, S. (2011). Managing knowledge assets under conditions of radical change: The case of the pharmaceutical industry. Technovation, 31(2), 105–117.CrossRefGoogle Scholar
  4. Avila-Robinson, A., & Miyazaki, K. (2013). Evolutionary paths of change of emerging nanotechnological innovation systems: The case of ZnO nanostructures. Scientometrics, 95(3), 829–849.CrossRefGoogle Scholar
  5. Bao, G., Mitragotri, S., & Tong, S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annual Review of Biomedical Engineering, 15, 253–282.CrossRefGoogle Scholar
  6. Batagelj, V. (2003). Efficient algorithms for citation network analysis. arXiv preprint arXiv:cs/0309023.Google Scholar
  7. Batagelj, V., & Cerinšek, M. (2013). On bibliographic networks. Scientometrics, 96(3), 845–864.CrossRefGoogle Scholar
  8. Bhikkaji, B., Ratnam, M., & Moheimani, S. O. R. (2007). Pvpf control of piezoelectric tube scanners. Sensors and Actuators A: Physical, 135(2), 700–712.CrossRefGoogle Scholar
  9. Bjornstad, D. J., & Wolfe, A. K. (2011). Adding to the mix: Integrating elsi into a national nanoscale science and technology center. Science and Engineering Ethics, 17(4), 743–760.CrossRefGoogle Scholar
  10. Bresnahan, T. F., & Trajtenberg, M. (1995). General purpose technologies engines of growth? Journal of Econometrics, 65(1), 83–108.CrossRefGoogle Scholar
  11. Carlaw, K. I., & Lipsey, R. G. (2011). Sustained endogenous growth driven by structured and evolving general purpose technologies. Journal of Evolutionary Economics, 21(4), 563–593.CrossRefGoogle Scholar
  12. Cho, H., & Swartzlander, E. E. (2007). Adder designs and analyses for quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 6(3), 374–383.CrossRefGoogle Scholar
  13. Cho, H., & Swartzlander, E. E, Jr. (2009). Adder and multiplier design in quantum-dot cellular automata. IEEE Transactions on Computers, 58(6), 721–727.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Choi, J.-Y., Ramachandran, G., & Kandlikar, M. (2009). The impact of toxicity testing costs on nanomaterial regulation. Environmental Science & Technology, 43(9), 3030–3034.CrossRefGoogle Scholar
  15. Chun, Y. W., & Webster, T. J. (2009). The role of nanomedicine in growing tissues. Annals of Biomedical Engineering, 37(10), 2034–2047.CrossRefGoogle Scholar
  16. Coccia, M. (2017). The source and nature of general purpose technologies for supporting next k-waves: Global leadership and the case study of the us Navy’s mobile user objective system. Technological Forecasting and Social Change, 116, 331–339.CrossRefGoogle Scholar
  17. Dai, J., Wang, L., & Jain, F. (2009). Analysis of defect tolerance in molecular crossbar electronics. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(4), 529–540.CrossRefGoogle Scholar
  18. de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515.CrossRefGoogle Scholar
  19. Devasia, S., Eleftheriou, E., & Moheimani, S. O. R. (2007). A survey of control issues in nanopositioning. IEEE Transactions on Control Systems Technology, 15(5), 802–823.CrossRefGoogle Scholar
  20. Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162.CrossRefGoogle Scholar
  21. Érdi, P., Makovi, K., Somogyvári, Z., Strandburg, K., Tobochnik, J., Volf, P., et al. (2013). Prediction of emerging technologies based on analysis of the us patent citation network. Scientometrics, 95(1), 225–242.CrossRefGoogle Scholar
  22. Feynman, R. P. (1960). There’s plenty of room at the bottom. Engineering and Science, 23(5), 22–36.Google Scholar
  23. Frechette, M. F., Trudeau, M. L., Alamdar, H. D., & Boily, S. (2004). Introductory remarks on nanodielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 11(5), 808–818.CrossRefGoogle Scholar
  24. Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.MathSciNetCrossRefGoogle Scholar
  25. Gan, C. W., & Feng, S.-S. (2010). Transferrin-conjugated nanoparticles of poly (lactide)-d-$\alpha $-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials, 31(30), 7748–7757.CrossRefGoogle Scholar
  26. Garfield, E., Paris, S., & Stock, W. G. (2006). Histcitetm: A software tool for informetric analysis of citation linkage. Information Wissenschaft und Praxis, 57(8), 391.Google Scholar
  27. Garfield, E., Sher, I. H , & Torpie, R. J. (1964). The use of citation data in writing the history of science. Technical report, The Institute for Scientific Information.Google Scholar
  28. Godman, M. (2008). But is it unique to nanotechnology? Science and Engineering Ethics, 14(3), 391–403.CrossRefGoogle Scholar
  29. Godwin, H. A., Chopra, K., Bradley, K. A., Cohen, Y., Harthorn, B. H., Hoek, E. M. V., et al. (2009). The university of California center for the environmental implications of nanotechnology. Environmental Science & Technology, 43(17), 6453–6457.CrossRefGoogle Scholar
  30. Hanson, G. W. (2008). Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes. IEEE Antennas and Propagation Magazine, 50(3), 66–77.CrossRefGoogle Scholar
  31. Hanson, G. W. (2011). A common electromagnetic framework for carbon nanotubes and solid nanowiresspatially dispersive conductivity, generalized Ohm’s law, distributed impedance, and transmission line model. IEEE Transactions on Microwave Theory and Techniques, 59(1), 9–20.CrossRefGoogle Scholar
  32. Helpman, E. (1998). General purpose technologies and economic growth. Cambridge, MA: MIT press.Google Scholar
  33. Helpman, E., & Trajtenberg, M. (1998a). Diffusion of general purpose technologies. In General purpose technologies and economic growth, p. 85.Google Scholar
  34. Helpman, E., & Trajtenberg, M. (1998b). A time to sow and a time to reap: Growth based on general purpose technologies. In General purpose technologies and economic growth, p. 55.Google Scholar
  35. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.CrossRefzbMATHGoogle Scholar
  36. Hood, W., & Wilson, C. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291–314.CrossRefGoogle Scholar
  37. Huang, Z., Chen, H., Chen, Z.-K., & Roco, M. C. (2004). International nanotechnology development in 2003: Country, institution, and technology field analysis based on uspto patent database. Journal of Nanoparticle Research, 6(4), 325–354.CrossRefGoogle Scholar
  38. Huang, Z., Chen, H., Yip, A., Ng, G., Guo, F., Chen, Z.-K., et al. (2003). Longitudinal patent analysis for nanoscale science and engineering: Country, institution and technology field. Journal of Nanoparticle Research, 5(3–4), 333–363.CrossRefGoogle Scholar
  39. Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11(1), 39–63.CrossRefGoogle Scholar
  40. Kajikawa, Y., Ohno, J., Takeda, Y., Matsushima, K., & Komiyama, H. (2007). Creating an academic landscape of sustainability science: An analysis of the citation network. Sustainability Science, 2(2), 221–231.CrossRefGoogle Scholar
  41. Kejžar, N., Černe, S. K., & Batagelj, V. (2010). Network analysis of works on clustering and classification from web of science. In Classification as a tool for research (pp. 525–536). Springer.Google Scholar
  42. Kong, S. D., Sartor, M., Hu, C.-M. J., Zhang, W., Zhang, L., & Jin, S. (2013). Magnetic field activated lipid–polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomaterialia, 9(3), 5447–5452.CrossRefGoogle Scholar
  43. Kuhn, T. (1962). The structure of scientific revolutions.Google Scholar
  44. Kuhn, T. S. (1969). The structure of scientific revolutions, postscript. Book.Google Scholar
  45. Lathabai, H. H., Prabhakaran, T., & Changat, M. (2015). Centrality and flow vergence gradient based path analysis of scientific literature: A case study of biotechnology for engineering. Physica A: Statistical Mechanics and Its Applications, 429, 157–168.CrossRefGoogle Scholar
  46. Lee, S. H., Zhang, Z., & Feng, S.-S. (2007). Nanoparticles of poly (lactide)tocopheryl polyethylene glycol succinate (pla-tpgs) copolymers for protein drug delivery. Biomaterials, 28(11), 2041–2050.CrossRefGoogle Scholar
  47. Leydesdorff, L. (2007a). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319.CrossRefGoogle Scholar
  48. Leydesdorff, L. (2007b). Visualization of the citation impact environments of scientific journals: An online mapping exercise. Journal of the American Society for Information Science and Technology, 58(1), 25–38.CrossRefGoogle Scholar
  49. Li, X., Chen, H., Huang, Z., & Roco, M.  C. (2007a). Patent citation network in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9(3), 337–352.Google Scholar
  50. Li, X., Lin, Y., Chen, H., & Roco, M.  C. (2007b). Worldwide nanotechnology development: A comparative study of uspto, epo, and jpo patents (1976–2004. Journal of Nanoparticle Research, 9(6), 977–1002.Google Scholar
  51. Liu, Y., Li, K., Liu, B., & Feng, S.-S. (2010a). A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials, 31(35), 9145–9155.Google Scholar
  52. Liu, Y., Li, K., Pan, J., Liu, B., & Feng, S.-S. (2010b). Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of docetaxel. Biomaterials, 31(2), 330–338.Google Scholar
  53. Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of Washington Academy Sciences.Google Scholar
  54. Meyer, D. E., Curran, M. A., & Gonzalez, M. A. (2009). An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environmental Science & Technology, 43(5), 1256–1263.CrossRefGoogle Scholar
  55. Mi, Y., Liu, Y., & Feng, S.-S. (2011). Formulation of docetaxel by folic acid-conjugated d-$\alpha $-tocopheryl polyethylene glycol succinate 2000 (vitamin e tpgs 2k) micelles for targeted and synergistic chemotherapy. Biomaterials, 32(16), 4058–4066.CrossRefGoogle Scholar
  56. Mi, Y., Liu, X., Zhao, J., Ding, J., & Feng, S.-S. (2012). Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials, 33(30), 7519–7529.CrossRefGoogle Scholar
  57. Nikulainen, T., & Palmberg, C. (2010). Transferring science-based technologies to industrydoes nanotechnology make a difference? Technovation, 30(1), 3–11.CrossRefGoogle Scholar
  58. Ostertag, K., & Hüsing, B. (2008). Identification of starting points for exposure assessment in the post-use phase of nanomaterial-containing products. Journal of Cleaner Production, 16(8), 938–948.CrossRefGoogle Scholar
  59. Pan, J., & Feng, S.-S. (2008). Targeted delivery of paclitaxel using folate-decorated poly (lactide)-vitamin e tpgs nanoparticles. Biomaterials, 29(17), 2663–2672.CrossRefGoogle Scholar
  60. Pan, J., & Feng, S.-S. (2009). Targeting and imaging cancer cells by folate-decorated, quantum dots (qds)-loaded nanoparticles of biodegradable polymers. Biomaterials, 30(6), 1176–1183.CrossRefGoogle Scholar
  61. Pantin, V. (2012). Global economic and political development in the first half of the 21st century: Forecast based on the wave conception. In 3G: Globalistics, global studies, globalization studies, p. 150.Google Scholar
  62. Prabhakaran, T., Lathabai, H. H., & Changat, M. (2015). Detection of paradigm shifts and emerging fields using scientific network: A case study of information technology for engineering. Technological Forecasting and Social Change, 91, 124–145.CrossRefGoogle Scholar
  63. Prabhakaran, T., Lathabai, H. H., George, S., & Changat, M. (2018). Towards prediction of paradigm shifts from scientific literature. Scientometrics, 117(3), 1611–1644.CrossRefGoogle Scholar
  64. Rachlin, E., & Savage, J. (2008). Analysis of mask-based nanowire decoders. IEEE Transactions on Computers, 57(2), 175–187.MathSciNetCrossRefzbMATHGoogle Scholar
  65. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for information Science and Technology, 61(9), 1871–1887.CrossRefGoogle Scholar
  66. Rani, V. V. D., Vinoth-Kumar, L., Anitha, V. C., Manzoor, K., Deepthy, M., & Shantikumar, V. N. (2012). Osteointegration of titanium implant is sensitive to specific nanostructure morphology. Acta Biomaterialia, 8(5), 1976–1989.CrossRefGoogle Scholar
  67. Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.MathSciNetCrossRefGoogle Scholar
  68. Tehrani, M. A., Safaei, F., Moaiyeri, M. H., & Navi, K. (2011). Design and implementation of multistage interconnection networks using quantum-dot cellular automata. Microelectronics Journal, 42(6), 913–922.CrossRefGoogle Scholar
  69. Thomson Scientific et al (2007). Isi web of knowledge. Science Citation Index and Journal Citation Report.Google Scholar
  70. Ueno, T., Tsukimura, N., Yamada, M., & Ogawa, T. (2011). Enhanced bone-integration capability of alkali-and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Biomaterials, 32(30), 7297–7308.CrossRefGoogle Scholar
  71. Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.CrossRefGoogle Scholar
  72. Yang, X., Cai, L., Huang, H., & Zhao, X. (2012). A comparative analysis and design of quantum-dot cellular automata memory cell architecture. International Journal of Circuit Theory and Applications, 40(1), 93–103.CrossRefGoogle Scholar
  73. Zeng, X., Tao, W., Mei, L., Huang, L., Tan, C., & Feng, S.-S. (2013). Cholic acid-functionalized nanoparticles of star-shaped plga-vitamin e tpgs copolymer for docetaxel delivery to cervical cancer. Biomaterials, 34(25), 6058–6067.CrossRefGoogle Scholar
  74. Zhang, X., Dong, Y., Zeng, X., Liang, X., Li, X., Tao, W., et al. (2014). The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 35(6), 1932–1943.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Futures StudiesUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations