Advertisement

Scientometrics

, Volume 118, Issue 1, pp 93–108 | Cite as

Co-authorship networks and research impact in large research facilities: benchmarking internal reports and bibliometric databases

  • Fabio S. V. Silva
  • Peter A. SchulzEmail author
  • Everard C. M. Noyons
Article

Abstract

In this paper, we address the main differences of the scientific production between internal and external researcher groups of a synchrotron radiation facility. Through the construction and analysis of their co-authorship networks, we could see the structural variations in the way these two different kinds of research groups collaborate. We also evaluated the scientific impact of each group and found surprising similarities, which led us to create two hypotheses that might contribute to the comprehension of the scientific assessment of large-scale research facilities. We found that, as the review criteria the studied synchrotron adopts to select external scientific projects is very effective; the quality of the external research is at least as good as the internal. Therefore, evaluating the internal scientific output appears to be an appropriate representation of the impact of the whole laboratory.

Keywords

Research impact Large-scale facilities Co-authorship networks Collaboration dynamics 

Notes

Acknowledgements

This work was supported by Grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil.

References

  1. Bastian, M., Heymann, S., & Jacomi, M. (2009). Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Web and Social Media, 8, 361–362.Google Scholar
  2. Bouabid, H., & Larivière, V. (2013). The lengthening of papers’ life expectancy: A diachronous analysis. Scientometrics, 97, 695–711.CrossRefGoogle Scholar
  3. de Solla Price, D. J. (1963). Little science, big science. New York: Columbia University Press.Google Scholar
  4. Doing, P. (2009). Velvet revolution at the synchrotron: Biology, physics, and change in science. Cambridge: MIT Press.CrossRefGoogle Scholar
  5. Godin, B. (2009). The value of science: changing conceptions of scientific productivity, 1869 to circa 1970. Social Science Information, 48(4), 547–586CrossRefGoogle Scholar
  6. Hallonsten, O. (2013). Introducing ‘facilitymetrics’: A first review and analysis of commonly used measures of scientific leadership among synchrotron radiation facilities worldwide. Scientometrics, 96(2), 497–513.CrossRefGoogle Scholar
  7. Hallonsten, O. (2015). The parasites: Synchrotron Radiation at SLAC, 1972–1992. Historical Studies in Natural Science, 45(2), 217–272.CrossRefGoogle Scholar
  8. Hallonsten, O. (2016a). Use and produxtivity of contemporary, multidisciplinary Big Science. Research Evaluation, 25(4), 485–495.Google Scholar
  9. Hallonsten, O. (2016b). Use and productivity of contemporary, multidisciplinary big science. Research Evaluation, 25(4), 486–495.Google Scholar
  10. Hallonsten, O., & Heinze, T. (2015). Formation and expansion of a new organization filed in experimental science. Science and Public Policy, 42, 841–854.CrossRefGoogle Scholar
  11. Heinze, T., Hallonsten, O., & Heinecke, S. (2017). Turning the ship: The transformation of DESY, 1993–2009. Physics and Pespective, 19(4), 424–451.CrossRefGoogle Scholar
  12. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18.CrossRefGoogle Scholar
  13. Kramer, K. C. (2018). Lightening Europe: Establishing the European Synchrotron radiation Facility (ESRF). History and Technology, 33(4), 396–427.CrossRefGoogle Scholar
  14. Larivière, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration and scientific impact since 1900. Journal of the Association for Information Science and Technology, 66(7), 1323–1332.CrossRefGoogle Scholar
  15. Lauto, G., & Valentin, F. (2013). How large-scale research facilities connect to global research. Review of Policy Research, 30(4), 381–408.CrossRefGoogle Scholar
  16. Lee, S., & Bozeman, B. (2005). The impact of research collaboration and scientific productivity. Social Studies of Science, 35(5), 673–702.CrossRefGoogle Scholar
  17. Lozano, S., Rodríguez, X.-P., & Arenas, A. (2014). Atapuerca: Evolution of scientific collaboration in an emergente large-scale research infrastructure. Scientometrics, 98(2), 1505–1520.CrossRefGoogle Scholar
  18. Manganote, E. J. T., Schulz, P. A., & Brito Cruz, C. H. (2016). Effect of high energy physics large collaborations on higher education institutions citations and rankings. Scientometrics, 109(2), 813–826.CrossRefGoogle Scholar
  19. Narin, F., & Hamilton, K. S. (1996). Bibliometric performance measures. Scientometrics, 36(3), 293–310.CrossRefGoogle Scholar
  20. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(1), 5200–5202.CrossRefGoogle Scholar
  22. Olensky, M., Schmidt, M., & van Eck, N. J. (2016). Evaluation of the citation matching algorithms of CWTS and iFQ in comparison to the web of science. Journal of the Association for Information Science and Technology, 67(10), 2550–2564.CrossRefGoogle Scholar
  23. Paul-Hus, A., Díaz-Faes, A. A., Sainte-Marie, M., Desrochers, N., Costas, R., & Larivière, V. (2017). Beyond funding: Acknowledgement patterns in biomedical, natural and social sciences. PLoS ONE, 12(10), e0185578.CrossRefGoogle Scholar
  24. Trimble, V. (2010). A generation of astronomical telescopes, their users, and publication. Scientometrics, 84(1), 21–34.CrossRefGoogle Scholar
  25. Uddin, S., Hossain, L., Abbasi, A., & Rasmussen, K. (2012). Trend and efficiency analysis of co-authorship network. Scientometrics, 90(2), 687–699.CrossRefGoogle Scholar
  26. van Leeuwen, T. N., & Moed, H. F. (2012). Funding decisions, peer review, and scientific excellence in physical sceinces, chemistry, and geosciences. Research Evaluation, 21, 189–198.CrossRefGoogle Scholar
  27. Waltman, L., Calero-Medina, C., Kosten, J., Noyons, E. C. M., Tijssen, R. J. W., van Eck, N. J., et al. (2012). The Leiden ranking 2011/2012: Data collection, indicators, and interpretation. Journal of the American Society for Information Science and Technology, 63, 2419–2432.  https://doi.org/10.1002/asi.22708.CrossRefGoogle Scholar
  28. Zhang, L., & Glänzel, W. (2017). A citation-based cross-disciplinary study on literature ageing: Part II—diachronous aspects. Scientometrics, 111, 1559–1572.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Fabio S. V. Silva
    • 1
  • Peter A. Schulz
    • 1
    Email author
  • Everard C. M. Noyons
    • 2
  1. 1.Faculdade de Ciências AplicadasUniversidade Estadual de CampinasLimeiraBrazil
  2. 2.Centre for Science and Technology Studies (CWTS)Leiden UniversityLeidenThe Netherlands

Personalised recommendations