Advertisement

Predictive power of conference-related factors on citation rates of conference papers

  • Danielle H. Lee
Article
  • 11 Downloads

Abstract

This paper aims to determine the factors significantly predicting the future citation rates of conference papers. Whereas a large body of bibliometric studies has investigated the multiple factors predicting future citation rates, the attention has been paid mainly on journal articles. This study analyzes 43,463 papers from 81 conference series in the ‘Information Science’ and ‘Computer Science’ fields and examines the contributions of conference-related factors to the citation rates of the conference papers. More specifically, this paper assesses the following conference related factors as being potentially predictive factors of citation rates: longevity and names of the conference series, the number of presented papers at individual conferences, acceptance rates, the seasons of conferences, the content similarity of the presented papers at a conference, the degree of the authors’ international collaborations and the records of the best paper awards at conferences. The regression results illustrate that all of the factors were significantly predictive to the future citations of the conference papers. The factors that contributed the most to explain the citations of the conference papers include: the degree of the authors’ international collaborations at individual conferences, the records of best paper awards and the acceptance rates of individual conferences.

Keywords

Citation analysis Conferences Information science Bibliometric analysis 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (NRF-2018R1C1B6002434).

References

  1. Barbosa, S. D. J., Silveira, M. S., & Gasparini, I. (2017). What publications metadata tell us about the evolution of a scientific community: The case of the Brazilian human–computer interaction conference series. Scientometrics, 110(1), 275–300.  https://doi.org/10.1007/s11192-016-2162-4.CrossRefGoogle Scholar
  2. Bartneck, C., & Hu, J. (2009). Scientometric analysis of the CHI proceedings. Paper presented at the proceedings of the SIGCHI conference on human factors in computing systems, Boston, MA, USA.Google Scholar
  3. Borgman, C. L., & Furner, J. (2002). Scholarly communication and bibliometrics. Annual Review of Information Science and Technology, 36(1), 2–72.  https://doi.org/10.1002/aris.1440360102.CrossRefGoogle Scholar
  4. Bornmann, L., Marx, W., Gasparyan, A. Y., & Kitas, G. D. (2012). Diversity, value and limitations of the journal impact factor and alternative metrics. Rheumatology International, 32(7), 1861–1867.CrossRefGoogle Scholar
  5. Butler, L., & Visser, M. S. (2006). Extending citation analysis to non-source items. Scientometrics, 66(2), 327–343.  https://doi.org/10.1007/s11192-006-0024-1.CrossRefGoogle Scholar
  6. Chan, H. C., Hee-Woong, K., & Chee, T. W. (2006). Information systems citation patterns from International Conference on Information Systems articles. Journal of the American Society for Information Science and Technology, 57(9), 1263–1274.  https://doi.org/10.1002/asi.20413.CrossRefGoogle Scholar
  7. Chen, J., & Konstan, J. A. (2010). Conference paper selectivity and impact. Communications of the ACM, 53(6), 79–83.  https://doi.org/10.1145/1743546.1743569.CrossRefGoogle Scholar
  8. Eckmann, M., Rocha, A., & Wainer, J. (2012). Relationship between high-quality journals and conferences in computer vision. Scientometrics, 90(2), 617–630.  https://doi.org/10.1007/s11192-011-0527-2.CrossRefGoogle Scholar
  9. Elshawi, R., & Sakr, S. (2016). On analyzing the impact of authors and their collaboration patterns in the major computer algorithms research conferences. COLLNET Journal of Scientometrics and Information Management, 10(1), 155–173.  https://doi.org/10.1080/09737766.2016.1177951.CrossRefGoogle Scholar
  10. Franceschet, M. (2010). A comparison of bibliometric indicators for computer science scholars and journals on Web of Science and Google Scholar. Scientometrics, 83(1), 243–258.  https://doi.org/10.1007/s11192-009-0021-2.CrossRefGoogle Scholar
  11. Freyne, J., Coyle, L., Smyth, B., & Cunningham, P. (2010). Relative status of journal and conference publications in computer science. Communications of the ACM, 53(11), 124–132.  https://doi.org/10.1145/1839676.1839701.CrossRefGoogle Scholar
  12. Gargouri, Y., Hajjem, C., Larivière, V., Gingras, Y., Carr, L., Brody, T., et al. (2010). Self-selected or mandated, open access increases citation impact for higher quality research. PLoS ONE, 5(10), e13636.  https://doi.org/10.1371/journal.pone.0013636.CrossRefGoogle Scholar
  13. Glänzel, W., Schlemmer, B., Schubert, A., & Thijs, B. (2006). Proceedings literature as additional data source for bibliometric analysis. Scientometrics, 68(3), 457–473.  https://doi.org/10.1007/s11192-006-0124-y.CrossRefGoogle Scholar
  14. Han, P., Shi, J., Li, X., Wang, D., Shen, S., & Su, X. (2014). International collaboration in LIS: Global trends and networks at the country and institution level. Scientometrics, 98(1), 53–72.  https://doi.org/10.1007/s11192-013-1146-x.CrossRefGoogle Scholar
  15. Harzing, A.-W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804.  https://doi.org/10.1007/s11192-015-1798-9.CrossRefGoogle Scholar
  16. Hoekman, J., Frenken, K., & Tijssen, R. J. W. (2010). Research collaboration at a distance: Changing spatial patterns of scientific collaboration within Europe. Research Policy, 39(5), 662–673.  https://doi.org/10.1016/j.respol.2010.01.012.CrossRefGoogle Scholar
  17. Ibáñez, A., Bielza, C., & Larrañaga, P. (2013). Relationship among research collaboration, number of documents and number of citations: a case study in Spanish computer science production in 2000–2009. Scientometrics, 95(2), 689–716.  https://doi.org/10.1007/s11192-012-0883-6.CrossRefGoogle Scholar
  18. Keith, T. Z. (2014). Multiple regression and beyond: An introduction to multiple regression and structural equation modeling. London: Routledge.CrossRefGoogle Scholar
  19. Kim, M. C., & Chen, C. (2015). A scientometric review of emerging trends and new developments in recommendation systems. Scientometrics, 104(1), 239–263.  https://doi.org/10.1007/s11192-015-1595-5.CrossRefGoogle Scholar
  20. Laender, A. H. F., de Lucena, C. J. P., Maldonado, J. C., de Souza e Silva, E., & Ziviani, N. (2008). Assessing the research and education quality of the top Brazilian Computer Science graduate programs. SIGCSE Bulletin, 40(2), 135–145.  https://doi.org/10.1145/1383602.1383654.CrossRefGoogle Scholar
  21. Larivière, V., Sugimoto, C. R., & Cronin, B. (2012). A bibliometric chronicling of library and information science’s first hundred years. Journal of the American Society for Information Science and Technology, 63(5), 997–1016.  https://doi.org/10.1002/asi.22645.CrossRefGoogle Scholar
  22. Lee, D. H., & Brusilovsky, P. (2017). Improving personalized recommendations using community membership information. Information Processing and Management, 53(5), 1201–1214.  https://doi.org/10.1016/j.ipm.2017.05.005.CrossRefGoogle Scholar
  23. Li, X., Rong, W., Shi, H., Tang, J., & Xiong, Z. (2018). The impact of conference ranking systems in computer science: A comparative regression analysis. Scientometrics, 116(2), 879–907.  https://doi.org/10.1007/s11192-018-2763-1.CrossRefGoogle Scholar
  24. Lisée, C., Larivière, V., & Archambault, É. (2008). Conference proceedings as a source of scientific information: A bibliometric analysis. Journal of the American Society for Information Science and Technology, 59(11), 1776–1784.  https://doi.org/10.1002/asi.20888.CrossRefGoogle Scholar
  25. Loizides, O.-S., & Koutsakis, P. (2017). On evaluating the quality of a computer science/computer engineering conference. Journal of Informetrics, 11(2), 541–552.  https://doi.org/10.1016/j.joi.2017.03.008.CrossRefGoogle Scholar
  26. Martins, W. S., Gonçalves, M. A., Laender, A. H. F., & Ziviani, N. (2010). Assessing the quality of scientific conferences based on bibliographic citations. Scientometrics, 83(1), 133–155.  https://doi.org/10.1007/s11192-009-0078-y.CrossRefGoogle Scholar
  27. Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar. Journal of the American Society for Information Science and Technology, 58(13), 2105–2125.  https://doi.org/10.1002/asi.20677.CrossRefGoogle Scholar
  28. Michels, C., & Fu, J.-Y. (2014). Systematic analysis of coverage and usage of conference proceedings in web of science. Scientometrics, 100(2), 307–327.  https://doi.org/10.1007/s11192-014-1309-4.CrossRefGoogle Scholar
  29. Montesi, M., & Owen, J. M. (2008). From conference to journal publication: How conference papers in software engineering are extended for publication in journals. Journal of the American Society for Information Science and Technology, 59(5), 816–829.  https://doi.org/10.1002/asi.20805.CrossRefGoogle Scholar
  30. Nomaler, Ö., Frenken, K., & Heimeriks, G. (2013). Do more distant collaborations have more citation impact? Journal of Informetrics, 7(4), 966–971.  https://doi.org/10.1016/j.joi.2013.10.001.CrossRefGoogle Scholar
  31. Onodera, N., & Yoshikane, F. (2015). Factors affecting citation rates of research articles. Journal of the Association for Information Science and Technology, 66(4), 739–764.  https://doi.org/10.1002/asi.23209.CrossRefGoogle Scholar
  32. Peng, T.-Q., & Zhu, J. J. H. (2012). Where you publish matters most: A multilevel analysis of factors affecting citations of internet studies. Journal of the American Society for Information Science and Technology, 63(9), 1789–1803.  https://doi.org/10.1002/asi.22649.CrossRefGoogle Scholar
  33. Radicchi, F., & Castellano, C. (2013). Analysis of bibliometric indicators for individual scholars in a large data set. Scientometrics, 97(3), 627–637.  https://doi.org/10.1007/s11192-013-1027-3.CrossRefGoogle Scholar
  34. Rahm, E., & Thor, A. (2005). Citation analysis of database publications. SIGMOD Record, 34(4), 48–53.  https://doi.org/10.1145/1107499.1107505.CrossRefGoogle Scholar
  35. Sakr, S., & Alomari, M. (2012). A decade of database conferences: A look inside the program committees. Scientometrics, 91(1), 173–184.  https://doi.org/10.1007/s11192-011-0530-7.CrossRefGoogle Scholar
  36. Scopus. (2013). Content coverage guide. Retrieved from https://files.sciverse.com/documents/pdf/ContentCoverageGuide-jan-2013.pdf.
  37. Shirakawa, N., Furukawa, T., Nomura, M., & Okuwada, K. (2012). Global competition and technological transition in electrical, electronic, information and communication engineering: Quantitative analysis of periodicals and conference proceedings of the IEEE. Scientometrics, 91(3), 895–910.  https://doi.org/10.1007/s11192-011-0566-8.CrossRefGoogle Scholar
  38. Sin, S.-C. J. (2011). International coauthorship and citation impact: A bibliometric study of six LIS journals, 1980–2008. Journal of the American Society for Information Science and Technology, 62(9), 1770–1783.  https://doi.org/10.1002/asi.21572.CrossRefGoogle Scholar
  39. Song, M., Heo, G. E., & Kim, S. Y. (2014). Analyzing topic evolution in bioinformatics: Investigation of dynamics of the field with conference data in DBLP. Scientometrics, 101(1), 397–428.CrossRefGoogle Scholar
  40. Souto, M. A. M., Warpechowski, M., & de Oliveira, J. P. M. (2007). An ontological approach for the quality assessment of computer science conferences. Berlin: Springer.CrossRefGoogle Scholar
  41. Tahamtan, I., Safipour Afshar, A., & Ahamdzadeh, K. (2016). Factors affecting number of citations: A comprehensive review of the literature. Scientometrics, 107(3), 1195–1225.  https://doi.org/10.1007/s11192-016-1889-2.CrossRefGoogle Scholar
  42. Thelwall, M., & Wilson, P. (2014). Regression for citation data: An evaluation of different methods. Journal of Informetrics, 8(4), 963–971.  https://doi.org/10.1016/j.joi.2014.09.011.CrossRefGoogle Scholar
  43. Vanclay, J. K. (2013). Factors affecting citation rates in environmental science. Journal of Informetrics, 7(2), 265–271.  https://doi.org/10.1016/j.joi.2012.11.009.CrossRefGoogle Scholar
  44. Vardi, M. Y. (2010). Revisiting the publication culture in computing research. Communications of the ACM, 53(3), 5.  https://doi.org/10.1145/1666420.1666421.CrossRefGoogle Scholar
  45. Vasilescu, B., Serebrenik, A., Mens, T., van den Brand, M. G. J., & Pek, E. (2014). How healthy are software engineering conferences? Science of Computer Programming, 89, 251–272.  https://doi.org/10.1016/j.scico.2014.01.016.CrossRefGoogle Scholar
  46. Vrettas, G., & Sanderson, M. (2015). Conferences versus journals in computer science. Journal of the Association for Information Science and Technology, 66(12), 2674–2684.  https://doi.org/10.1002/asi.23349.CrossRefGoogle Scholar
  47. Wainer, J., Eckmann, M., & Rocha, A. (2015). Peer-selected “best papers”—Are they really that “good”? PLoS ONE, 10(3), e0118446.  https://doi.org/10.1371/journal.pone.0118446.CrossRefGoogle Scholar
  48. Wainer, J., Przibisczki de Oliveira, H., & Anido, R. (2011). Patterns of bibliographic references in the ACM published papers. Information Processing and Management, 47(1), 135–142.  https://doi.org/10.1016/j.ipm.2010.07.002.CrossRefGoogle Scholar
  49. Wainer, J., & Valle, E. (2013). What happens to computer science research after it is published? Tracking CS research lines. Journal of the American Society for Information Science and Technology, 64(6), 1104–1111.CrossRefGoogle Scholar
  50. Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391.  https://doi.org/10.1016/j.joi.2016.02.007.CrossRefGoogle Scholar
  51. Wersig, G. (1993). Information science: The study of postmodern knowledge usage. Information Processing and Management, 29(2), 229–239.  https://doi.org/10.1016/0306-4573(93)90006-Y.CrossRefGoogle Scholar
  52. Wuehrer, G. A., & Smejkal, A. E. (2013). The knowledge domain of the academy of international business studies (AIB) conferences: A longitudinal scientometric perspective for the years 2006–2011. Scientometrics, 95(2), 541–561.  https://doi.org/10.1007/s11192-012-0909-0.CrossRefGoogle Scholar
  53. Zahedi, Z., Costas, R., & Wouters, P. (2014). How well developed are altmetrics? A cross-disciplinary analysis of the presence of ‘alternative metrics’ in scientific publications. Scientometrics, 101(2), 1491–1513.  https://doi.org/10.1007/s11192-014-1264-0.CrossRefGoogle Scholar
  54. Zhang, Y., & Jia, X. (2013). Republication of conference papers in journals? Learned Publishing, 26(3), 189–196.  https://doi.org/10.1087/20130307.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of SoftwareSangmyung UniversityCheonan-siSouth Korea

Personalised recommendations