Advertisement

Scientometrics

, Volume 117, Issue 3, pp 2145–2157 | Cite as

Exploring the common denominator between microplastics and microbiology: a scientometric approach

  • Juliana A. Ivar do Sul
  • Alexander S. Tagg
  • Matthias LabrenzEmail author
Article

Abstract

At the Leibniz Institute for Baltic Sea Research Warnemünde (the home institute of this paper), scientists have been exploring the common denominator between microplastics and microbiology for almost a decade. Given this fact, there is now a palpable feeling for the need to analyse the scientometric aspects of publications in this topic aiming to comprehend the impact of microplastic-microbiology studies within the scientific literature as a whole. Scientometrics is a research field focused on understanding of the metrics of science. From a researcher’s perspective, it is a powerful tool to increase, for example, the ability to find the best journal for a specific paper, and consequently have a better chance to have this paper cited, which is crucial considering the competitiveness of the modern scientific landscape. However, scientists working in specific research fields, from natural sciences to engineering; mathematics to medicine, are typically unaware of the knowledge that can be gleaned from bibliometrics or scientometrics when outlining their publications strategies. This paper aims to improve this knowledge base for researchers working in microplastic and microbiological research. A total of 47 publications under analysis span from 2011 to 2018, and have been published in 23 journals, most of them interdisciplinary journals that are available for a widespread audience from both complementary and diverse subject areas. Despite a short citation window, publications received > 390 citations with a clear exponential pattern, showing a promising future for microplastic-microbiological research. Whether insofar, a researcher has been focused on either solely microplastics or microbiology, as these fields continue to collide as microplastic-microbiology interaction research continues to increase, this paper might illuminate the next steps for researchers preparing future publications.

Keywords

Impact of articles Marine pollution Priority pollutant Citation overview Scopus database 

Notes

Funding

This research was funded by BmBF project PLASTRAT, grant number 02WPL1446 J.

Supplementary material

11192_2018_2936_MOESM1_ESM.pdf (256 kb)
Supplementary material 1 (PDF 256 kb)

References

  1. Aleixandre, J. L., Aleixandre-Tudó, J. L., Bolaños-Pizarro, M., & Aleixandre-Benavent, R. (2015). Mapping the scientific research in organic farming: A bibliometric review. Scientometrics, 105(1), 295–309.  https://doi.org/10.1007/s11192-015-1677-4.CrossRefGoogle Scholar
  2. Amalfitano, S., Corno, G., Eckert, E., Fazi, S., Ninio, S., Callieri, C., et al. (2017). Tracing particulate matter and associated microorganisms in freshwaters. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3260-x.CrossRefGoogle Scholar
  3. Andrady, A. L. (2015). Persistence of plastic litter in the oceans. Marine anthropogenic litter.  https://doi.org/10.1007/978-3-319-16510-3_3.
  4. Artham, T., Sudhakar, M., Venkatesan, R., Madhavan Nair, C., Murty, K. V. G. K., & Doble, M. (2009). Biofouling and stability of synthetic polymers in sea water. International Biodeterioration and Biodegradation, 63(7), 884–890.  https://doi.org/10.1016/j.ibiod.2009.03.003.CrossRefGoogle Scholar
  5. Bajwa, R. S., Yaldram, K., & Rafique, S. (2013). A scientometric assessment of research output in nanoscience and nanotechnology: Pakistan perspective. Scientometrics, 94, 333–342.  https://doi.org/10.1007/s11192-012-0699-4.CrossRefGoogle Scholar
  6. Briand, J.-F., Djeridi, I., Jamet, D., Coupé, S., Bressy, C., Molmeret, M., et al. (2012). Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. Biofouling, 28(5), 453–463.  https://doi.org/10.1080/08927014.2012.688957.CrossRefGoogle Scholar
  7. Carpenter, E. J., & Smith, K. L., Jr. (1972). Plastics on the Sargasso sea surface. Science, 175(4027), 1240–1241.  https://doi.org/10.1126/science.175.4027.1240.CrossRefGoogle Scholar
  8. Carson, H. S., Nerheim, M. S., Carroll, K. A., & Eriksen, M. (2013). The plastic-associated microorganisms of the North Pacific Gyre. Marine Pollution Bulletin, 75(1–2), 126–132.  https://doi.org/10.1016/j.marpolbul.2013.07.054.CrossRefGoogle Scholar
  9. Casadevall, A., Bertuzzi, S., Officer, C. E., Buchmeier, M. J., Davis, R. J., Drake, H., et al. (2016). ASM journals eliminate impact factor information from journal websites. mSystems, 1(4), 4–5.  https://doi.org/10.1128/msystems.00088-16.copyright.CrossRefGoogle Scholar
  10. Eckert, E. M., Di Cesare, A., Kettner, M. T., Arias-Andres, M., Fontaneto, D., Grossart, H.-P., et al. (2018). Microplastics increase impact of treated wastewater on freshwater microbial community. Environmental Pollution, 234, 495–502.  https://doi.org/10.1016/j.envpol.2017.11.070.CrossRefGoogle Scholar
  11. Gao, W., Chen, Y., Liu, Y., & Guo, H. C. (2015). Scientometric analysis of phosphorus research in eutrophic lakes. Scientometrics, 102(3), 1951–1964.  https://doi.org/10.1007/s11192-014-1500-7.CrossRefGoogle Scholar
  12. García, J. A., Rodriguez-Sánchez, R., & Fdez-Valdivia, J. (2011). Ranking of the subject areas of Scopus. Journal of the American Society for Information Science and Technology, 62(10), 2013–2023.  https://doi.org/10.1002/asi.21589.CrossRefGoogle Scholar
  13. Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA, 295(1), 90–93.CrossRefGoogle Scholar
  14. Harrison, J. P., Hoellein, T. J., Sapp, M., Tagg, A. S., Ju-Nam, Y., & Ojeda, J. J. (2018). Microplastic-associated biofilms: A comparison of freshwater and marine environments. Handbook of environmental chemistry (Vol. 58).  https://doi.org/10.1007/978-3-319-61615-5_9.
  15. Harrison, J. P., Sapp, M., Schratzberger, M., & Osborn, A. M. (2011). Interactions between microorganisms and marine microplastics: A call for research. Marine Technology Society Journal, 45(2), 12–20.  https://doi.org/10.4031/MTSJ.45.2.2.CrossRefGoogle Scholar
  16. Harrison, J. P., Schratzberger, M., Sapp, M., & Osborn, A. M. (2014). Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiology, 14, 232.  https://doi.org/10.1186/s12866-014-0232-4.CrossRefGoogle Scholar
  17. Huerta Lwanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., et al. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment, 624, 753–757.  https://doi.org/10.1016/j.scitotenv.2017.12.144.CrossRefGoogle Scholar
  18. Ivar do Sul, J. A., & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environmental Pollution, 185, 352–364.  https://doi.org/10.1016/j.envpol.2013.10.036.CrossRefGoogle Scholar
  19. Kirstein, I. V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Löder, M., et al. (2016). Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine Environmental Research, 120, 1–8.  https://doi.org/10.1016/j.marenvres.2016.07.004.CrossRefGoogle Scholar
  20. Lobelle, D., & Cunliffe, M. (2011). Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin, 62(1), 197–200.  https://doi.org/10.1016/j.marpolbul.2010.10.013.CrossRefGoogle Scholar
  21. McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., & Kelly, J. J. (2014). Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental Science and Technology, 48(20), 11863–11871.  https://doi.org/10.1021/es503610r.CrossRefGoogle Scholar
  22. Oberbeckmann, S., Löder, M. G. J., & Labrenz, M. (2015). Marine microplastic-associated biofilms: A review. Environmental Chemistry, 12, 551–562.  https://doi.org/10.1071/EN15069.CrossRefGoogle Scholar
  23. Oberbeckmann, S., Loeder, M. G. J., Gerdts, G., & Osborn, A. M. (2014). Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiology Ecology, 90(2), 478–492.  https://doi.org/10.1111/1574-6941.12409.CrossRefGoogle Scholar
  24. Parthey, H., & Schuetze, W. (1991). Distribution of publications as an indicator for the evaluation of scientific programs. Scientometrics, 21(3), 459–464.CrossRefGoogle Scholar
  25. Shapira, P., Kwon, S., & Youtie, J. (2017). Tracking the emergence of synthetic biology. Scientometrics, 112, 1439–1469.  https://doi.org/10.1007/s11192-017-2452-5.CrossRefGoogle Scholar
  26. Sun, J., Wang, M. H., & Ho, Y. S. (2012). A historical review and bibliometric analysis of research on estuary pollution. Marine Pollution Bulletin, 64(1), 13–21.  https://doi.org/10.1016/j.marpolbul.2011.10.034.CrossRefGoogle Scholar
  27. Teixeira da Silva, J. A., & Memon, A. R. (2017). CiteScore: A cite for sore eyes, or a valuable, transparent metric? Scientometrics, 111(1), 553–556.  https://doi.org/10.1007/s11192-017-2250-0.CrossRefGoogle Scholar
  28. Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., et al. (2004). Lost at sea: Where is all the plastic? Science, 304(May), 838.CrossRefGoogle Scholar
  29. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.  https://doi.org/10.1007/s11192-009-0146-3.CrossRefGoogle Scholar
  30. Van Noorden, R. (2016). Impact factor gets heavy weight rival. Nature, 540, 325–326.CrossRefGoogle Scholar
  31. Viršek, M. K., Lovšin, M. N., Koren, Š., Kržan, A., & Peterlin, M. (2017). Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Marine Pollution Bulletin, 125(1–2), 301–309.  https://doi.org/10.1016/j.marpolbul.2017.08.024.CrossRefGoogle Scholar
  32. Webb, H. K., Crawford, R. J., Sawabe, T., & Ivanova, E. P. (2009). Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes and Environments, 24(1), 39–42.  https://doi.org/10.1264/jsme2.ME08538.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Leibniz Institute for Baltic Sea Research Warnemünde (IOW)RostockGermany

Personalised recommendations