Characterization of the Cuban biopharmaceutical industry from collaborative networks

  • Maria Victoria Guzmán-Sánchez
  • Maybel Piñón-Lora
  • Elio Atenógenes Villaseñor-García
  • José Luis Jiménez-Andrade
  • Humberto Carrillo-Calvet
Article

Abstract

Studies of scientific collaboration have introduced the concepts of collaborative networks. These networks may represent the social structure of a community of researchers or knowledge transmission in a specific country or economic sector. Cuban biopharmaceutical industry is an exceptional case study. This high-tech sector has achieved important development in the context of a “Third World” country, with a different political organization from the rest of the world. The main goal of this work is to characterize the Cuban biotechnology industry using collaborative networks. WoS database (1969–2016) was used and metric indicators of scientific collaboration obtained from the affiliation field. Netlike visualizations were produced with NodeXL software. BioCubaFarma meets about 50% of the total scientific production of all Cuban sectors. Since its foundation, the sector has maintained significant internal and external collaboration, with Europe, Latin America and the United States of America. The United States collaboration has been significant in the absence of diplomatic relations with that country. Collaboration is greater among centers of the old “scientific pole” than among old companies of the pharmaceutical sector. Moreover, there is a correlation between the magnitude of the scientific production and the collaboration levels. For the development of biomedicine in Cuba, collaboration has not been solely endogenous but has also represented a significant transfer of knowledge between Cuba and other countries.

Keywords

Collaborative networks BioCubaFarma Biopharmaceutical industry Community of researchers Scientific collaboration 

Notes

Acknowledgements

The authors wish to thank the Pérez-Guerrero Trust Fund (PGTF) for South-South Cooperation—Reference Number INT/12/K15, for funding the project “Scientific - Technological Observatory on Vaccines (VaCyT)”.

References

  1. Aguado, E., Rogel, R., Garduño, G., Becerril, A., Zúñiga, M. F., & Velázquez, A. (2009). Patrones de colaboración científica a partir de redes de coautoría. Revista de Ciencias Sociales, 16(Esp. Num.), 225–258 (online). http://www.redalyc.org/articulo.oa?id=10512244010. Accessed October 21, 2016.
  2. Arencibia-Jorge, R., Corera-Alvarez, E., Chinchilla-Rodríguez, Z., & De Moya-Anegón, F. (2016). Scientific output of the emerging Cuban biopharmaceutical industry: A scientometric approach. Scientometrics, 108(3), 1621–1636.  https://doi.org/10.1007/s11192-016-2023-1.CrossRefGoogle Scholar
  3. Begum, K. J., & Sami, L. K. (1988). Research collaboration in agricultural science. International Library Review, 20(1), 57–63.  https://doi.org/10.1016/0020-7837(88)90044-1.CrossRefGoogle Scholar
  4. Castro, F. (1990). Discurso de resumen en el acto conmemorativo del XX Aniversario de la Sociedad Espeleológica de Cuba (La Habana, 15 de enero de 1960). In Fidel Castro (Ed.), Fidel Castro. Ciencia, Tecnología y Sociedad (pp. 1959–1989). La Habana: Editora Política.Google Scholar
  5. Council of Ministers. (2012). Creación de la Organización Superior de Dirección Grupo de las Industrias Biotecnológicas y Farmacéuticas sus funciones y facultades. Gaceta Oficial, 52(CX), 243–245. https://www.gacetaoficial.gob.cu/. Accessed December 5, 2016.
  6. Crane, D. (1977). Social structure in a group of scientist: a test of the “invisible college” hypothesis. In S. Leinhardt (Ed.), Social networks a developing paradigm (pp. 161–178). Nueva York: Academic Press.  https://doi.org/10.1016/b978-0-12-442450-0.50003-1.Google Scholar
  7. De Moya-Anegón, F., & Herrero-Solana, V. (1999). Science in America Latina: A comparison of bibliometric and scientific-technical indicators. Scientometrics, 46(2), 299–320.  https://doi.org/10.1007/BF02464780.CrossRefGoogle Scholar
  8. de Solla Price, D. J. (1963). Little science, big science. New York: Columbia University Press.Google Scholar
  9. de Solla Price, D. J., & Beaver, D. (1966). Collaboration in an invisible college. American Psychologist, 21(11), 1011–1018.  https://doi.org/10.1037/h0024051.CrossRefGoogle Scholar
  10. Evenson, D. (2007). Cuba’s biotechnology revolution. MEDICC Review, 9(1), 8–10 (online). http://www.medicc.org/mediccreview/index.php?issue=6&id=57&a=vahtml. Accessed October 13, 2016.
  11. García-Capote, E. (1999). Surgimiento, evolución y perspectiva de la política de ciencia y tecnología en Cuba (1959–1995). Tecnología y Sociedad (p. 1999). La Habana: Editorial Félix Varela.Google Scholar
  12. García-Capote, E. (2015). La historia de la ciencia y la organización de la ciencia. Revista Anales de la Academia de Ciencias de Cuba, 5(2), 1–5 (online). http://www.revistaccuba.cu/index.php/acc/article/view/354/286. Accessed November 5, 2016.
  13. Glänzel, W., Heeffer, S., & Thijs, B. (2016). A triangular model for publication and citation statistics of individual authors. Scientometrics, 107(2), 857–872.  https://doi.org/10.1007/s11192-016-1870-0.CrossRefGoogle Scholar
  14. Glänzel, W., & Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56(3), 357–367.  https://doi.org/10.1023/A:1022378804087.CrossRefGoogle Scholar
  15. Glänzel, W., & Schubert, A. (2004). Analysing scientific networks through co-authorship. In: H.F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 257–276). Dordrecht: Springer.  https://doi.org/10.1007/1-4020-2755-9_12.Google Scholar
  16. Hottenrott, H., & Lawson, C. (2017). A first look at multiple institutional affiliations: A study of authors in Germany, Japan and the UK. Scientometrics, 111(1), 285–295.  https://doi.org/10.1007/s11192-017-2257-6.CrossRefGoogle Scholar
  17. Jang, Y., & Ko, Y. (2017). Sources of scientific creativity: Participant observation of a public research institute in Korea. Journal of Open Innovation: Technology, Market, and Complexity, 3(1), 1–16.  https://doi.org/10.1186/s40852-017-0052-5.CrossRefGoogle Scholar
  18. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18.  https://doi.org/10.1016/S0048-7333(96)00917-1.CrossRefGoogle Scholar
  19. Lage, A. (2007). Connecting science to population health: The “closed loop” approach. MEDICC Review, 9(1), 52 (online). www.medicc.org/mediccreview/pdf.php?lang=&id=65. Accessed November 24, 2016.
  20. Lage, A. (2012). Las funciones de la ciencia en el modelo económico cubano: intuiciones a partir del crecimiento de la industria biotecnológica. Economía y Desarrollo, 147(1), 80–106 (online). www.redalyc.org/pdf/4255/425541205005.pdf. Accessed 5 November 2016.
  21. Le Riverend, J. (1971). Historia económica de Cuba. La Habana: Instituto Cubano del Libro.Google Scholar
  22. López, E., Silva, R., Acevedo, B., Buxadó, J. A., Aguilera, A., & Herrera, L. (2006). Biotechnology in Cuba: 20 years of scientific, social and economic progress. Journal of Commercial Biotechnology, 13(1), 1–11.  https://doi.org/10.1057/palgrave.jcb.3050038.CrossRefGoogle Scholar
  23. Melin, G., & Persson, O. (1996). Studying research collaboration using co-authorships. Scientometrics, 36(3), 363–377.  https://doi.org/10.1007/BF02129600.CrossRefGoogle Scholar
  24. Moed, H. F., & Halevi, G. (2014). A bibliometric approach to tracking international scientific migration. Scientometrics, 101(3), 1987–2001.  https://doi.org/10.1007/s11192-014-1307-6.CrossRefGoogle Scholar
  25. Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences USA, 98(2), 404–409.  https://doi.org/10.1073/pnas.98.2.404.MathSciNetCrossRefMATHGoogle Scholar
  26. Newman, M. E. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences USA, 101(Suppl 1), 5200–5205.  https://doi.org/10.1073/pnas.0307545100.CrossRefGoogle Scholar
  27. ONEI, Oficina Nacional de Estadística e Información. (2016). Indicadores de Ciencia y Tecnología de Cuba. In: Anuario Estadístico de Cuba 2015 (AEC). Cuba: Oficina Nacional de Estadísticas. http://www.one.cu/aec2015/16%20Ciencia%20y%20Tecnologia.pdf. Accessed January 12, 2017.
  28. OEI, Organización de Estados Iberoamericanos. (2013). La biotecnología en Iberoamérica. Situación actual y tendencias [Report]. Chile: Ibero-American Observatory of Science, Technology and Society of the Center for Advanced University Studies. http://observatoriocts.org/. Accessed October 20, 2016.
  29. Peres, L. (1966). Are research organizations different? Australian Journal of Public Administration, 25(4), 281–296.  https://doi.org/10.1111/j.1467-8500.1966.tb00681.x.CrossRefGoogle Scholar
  30. Rodríguez, Y., Rubio, Y., & Solórzano, E. (2007). Las ciencias sociales en Cuba: una mirada desde una perspectiva métrica. Acimed, 16(6), 1–10 (online). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352007001200008&lng=es&tlng=es. Accessed September 16, 2016.
  31. Scott, J. (1991). Networks of corporate power: A comparative assessment. Annual Review of Sociology, 17(1), 181–203.  https://doi.org/10.1146/annurev.so.17.080191.001145.MathSciNetCrossRefGoogle Scholar
  32. Sotolongo, G., Guzmán, M. V., & Carrillo, H. (2002). ViBlioSom: Visualización de información bibliométrica mediante el mapeo autoorganizado. Revista Española de Documentación Científica, 25(4), 477–484.  https://doi.org/10.3989/redc.2002.v25.i4.281.Google Scholar
  33. Thorsteinsdóttir, H., Sáenz, T. W., Quach, U., Daar, A. S., & Singer, P. A. (2004). Cuba—Innovation through synergy. Nature Biotechnology, 22, DC19–DC24.  https://doi.org/10.1038/nbt1204supp-dc19.CrossRefGoogle Scholar
  34. UNESCO, United Nations Educational Scientific and Cultural Organizations. (2010). UNESCO science report: The current status of science. Paris: UNESCO Publishing. http://www.unesdoc.unesco.org/images/0018/001899/189958e.pdf. Accessed October 10, 2016.
  35. Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618.  https://doi.org/10.1016/j.respol.2005.08.002.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Finlay Institute of Vaccines. BioCubaFarmaHavanaCuba
  2. 2.Autonomous University of Mexico City (UACM)Mexico CityMexico
  3. 3.Center of Research and Innovation in Information and Communication Technologies (INFOTEC)AguascalientesMexico
  4. 4.Laboratory of Nonlinear Dynamics, Faculty of Sciences and Center of Complexity SciencesNational Autonomous University of Mexico (UNAM)Mexico CityMexico

Personalised recommendations