Advertisement

Scientometrics

, Volume 113, Issue 3, pp 1463–1479 | Cite as

Promoting scientodiversity inspired by biodiversity

  • Yoshi-aki Shimada
  • Jun Suzuki
Article

Abstract

Diversity of science (variety in and balance among research subjects) is often regarded as a key driver of innovation, but it is typically understood by means of heuristics, given the lack of precise formulations such as those found in biodiversity studies. From the policy perspective, a standard methodology for characterization of diversity of science is needed to enable the efficient management and breeding of diverse research responsive to socio-economic demands. We investigated the distribution of research subjects in a bibliographic database to develop a framework of diversity of science analogous to that of biodiversity. Our analysis of the distribution of research subjects among countries suggests that diversity of science has similar statistical characteristics as biodiversity. We find that number of research subjects follows log-normal distribution for almost all countries and indicates linear dependency on research budget in log–log plot. We also identify an inflection point in the subject–budget relationship curve. The results may validate the adoption of sophisticated concepts and techniques from biodiversity work in “scientodiversity” studies.

Keywords

Diversity of science Log-normal distribution Classification R&D expenditure Biodiversity 

Supplementary material

11192_2017_2545_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 81 kb)

References

  1. Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5(4), 594–607. doi: 10.1016/j.joi.2011.05.007.CrossRefGoogle Scholar
  2. Aydinoglu, A. U., Allard, S., & Mitchell, C. (2015). Measuring diversity in disciplinary collaboration in research teams: An ecological perspective. doi: 10.1093/reseval/rvv028.
  3. Barjak, F. (2006). Team diversity and research collaboration in life sciences teams: Does a combination of research cultures pay off? University of Applied Sciences Northwestern Switzerland, Series A: Discussion Paper, W02. Retrieved from http://netreact-eu.org/documents/DPW2006-02_TeamDiversity_Barjak_Franz.pdf.
  4. Börner, K. (2010). Atlas of science: Visualizing what we know. Cambridge: The MIT Press.Google Scholar
  5. Bosman, J., van Mourik, I., Rasch, M., Sieverts, E., & Verhoeff, H. (2006). Scopus reviewed and compared. Utrecht: Utrecht University Library.Google Scholar
  6. Carley, S., & Porter, A. L. (2012). A forward diversity index. Scientometrics, 90, 407–427. doi: 10.1007/s11192-011-0528-1.CrossRefGoogle Scholar
  7. Chaminade, C., & Plechero, M. (2014). Do regions make a difference? Regional innovation systems and global innovation networks in the ICT industry. European Planning Studies, 23(2), 215–237. doi: 10.1080/09654313.2013.861806.CrossRefGoogle Scholar
  8. Confraria, H., & Godinho, M. M. (2014). The impact of African science: A bibliometric analysis. Scientometrics, 102(2), 1241–1268. doi: 10.1007/s11192-014-1463-8.CrossRefGoogle Scholar
  9. Confraria, H., Mira Godinho, M., & Wang, L. (2017). Determinants of citation impact: A comparative analysis of the Global South versus the Global North. Research Policy, 46(1), 265–279. doi: 10.1016/j.respol.2016.11.004.CrossRefGoogle Scholar
  10. Gibbons, M. (1999). Science’s new social contract with society. Nature, 402, C81–C84.CrossRefGoogle Scholar
  11. Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. Contemporary sociology. London: Sage.Google Scholar
  12. Hicks, D., & Katz, J. S. (2011). Equity and excellence in research funding. Minerva, 49(2), 137–151. doi: 10.1007/s11024-011-9170-6.CrossRefGoogle Scholar
  13. Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.Google Scholar
  14. Igami, M., & Saka, A. (2016). Decreasing diversity in Japanese science, evidence from in-depth analyses of science maps. Scientometrics, 106(1), 383–403. doi: 10.1007/s11192-015-1648-9.CrossRefGoogle Scholar
  15. Irie, H., & Tokita, K. (2012). Species–area relationship for power-law species abundance distribution. International Journal of Biomathematics, 5(3), 1260014. Retrieved from http://arxiv.org/abs/q-bio/0609012.
  16. Kitai, T. (1993). Construction of JICST scientific technological classification 1993. Journal of Information Processing and Management, 35, 967–974.CrossRefGoogle Scholar
  17. Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: The University of Chicago Press. doi: 10.1119/1.1969660.Google Scholar
  18. Lee, Y. N., Walsh, J. P., & Wang, J. (2015). Creativity in scientific teams: Unpacking novelty and impact. Research Policy, 44(3), 684–697. doi: 10.1016/j.respol.2014.10.007.CrossRefGoogle Scholar
  19. Leydesdorff, L., Carley, S., & Rafols, I. (2013a). Global maps of science based on the new web-of-science categories. Scientometrics, 94, 589–593. doi: 10.1007/s11192-012-0784-8.CrossRefGoogle Scholar
  20. Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5, 87–100. doi: 10.1016/j.joi.2010.09.002.CrossRefGoogle Scholar
  21. Leydesdorff, L., Rafols, I., & Chen, C. (2013b). Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal–journal citations. Journal of the American Society for Information Science and Technology, 64, 2573–2586. doi: 10.1002/asi.CrossRefGoogle Scholar
  22. Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: Keys and clues. BioScience, 51(5), 341–352.CrossRefGoogle Scholar
  23. Lund Declaration. (2009). Europe must focus on the grand challenges of our time. In Swedish Presidency Research Conference in Lund. New Times New Solutions. Lund. Retrieved from http://www.vr.se/download/18.7dac901212646d84fd38000336/.
  24. MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton: Princeton University Press. doi: 10.2307/1796430.Google Scholar
  25. Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31, 247–264.CrossRefGoogle Scholar
  26. May, R. M. (1972). Will a large complex system be stable? Nature, 238, 413–414.CrossRefGoogle Scholar
  27. May, R. M. (1975). Patterns of species abundance and diversity. In M. L. Cody & J. M. Diamond (Eds.), Ecology and evolution of communities (pp. 81–120). Cambridge: The Belknap Press.Google Scholar
  28. May, R. M. (1999). Unanswered questions in ecology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1392), 1951–1959. doi: 10.1098/rstb.1999.0534.CrossRefGoogle Scholar
  29. Merton, R. K. (1973). The Normative Structure of Science. In N. Storer (Ed.), The sociology of sciene: Theoretical and empirical investigations (pp. 267–278). Chicago: The University Chicago Press.Google Scholar
  30. Mitesser, O., Heinz, M., Havemann, F., & Gläser, J. (2008). Measuring diversity of research by extracting latent themes from bipartite networks of papers and references. In H. Kretschmer & F. Havemann (Eds.), Proceedings of WIS 2008, 6th international conference on webometrics, informetrics and scientometrics & ninth COLLNET meeting. Berlin.Google Scholar
  31. Mougi, A., & Kondoh, M. (2012). Diversity of interaction types and ecological community stability. Science, 337(6092), 349–351. doi: 10.1126/science.1220529.CrossRefzbMATHMathSciNetGoogle Scholar
  32. Mugabushaka, A. M., Kyriakou, A., & Papazoglou, T. (2016). Bibliometric indicators of interdisciplinarity: The potential of the Leinster–Cobbold diversity indices to study disciplinary diversity. Scientometrics, 107(2), 593–607. doi: 10.1007/s11192-016-1865-x.CrossRefGoogle Scholar
  33. Nelson, R. (Ed.). (1993). National innovation systems: A comparative analysis. Oxford: Oxford University Press.Google Scholar
  34. Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–351. doi: 10.1016/j.cities.2012.03.001.CrossRefGoogle Scholar
  35. OECD. (2016). OECD Science, Technology and Industry Outlook. OECD. https://doi.org/10.1787/23129638.
  36. Paine, R. T. (1995). A conversation on refining the concept of keystone species. Conservation Biology, 9(4), 962–964. doi: 10.1046/j.1523-1739.1995.09040962.x.CrossRefGoogle Scholar
  37. Pan, R. K., Sinha, S., Kaski, K., & Saramäki, J. (2012). The evolution of interdisciplinarity in physics research. Scientific Reports, 2, 1–8. doi: 10.1038/srep00551.Google Scholar
  38. Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., et al. (1996). Challenges in the quest for keystones. BioScience, 46(8), 609–620. doi: 10.2307/1312990.CrossRefGoogle Scholar
  39. Preston, F. W. (1962). The canonical distribution of commonness and rarity: Part I. Ecology, 43(2), 185–215.CrossRefGoogle Scholar
  40. Preston, F. W. (1980). Noncanonical distributions of commonness and rarity. Ecology, 61(1), 88–97.CrossRefGoogle Scholar
  41. Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287. doi: 10.1007/s11192-009-0041-y.CrossRefGoogle Scholar
  42. Rosenberg, N. (1996). Uncertainty and technological change. In G. W. R. Landau & T. Taylor (Eds.), The mosaic of economic growth (pp. 334–353). Stanford: Stanford University Press.Google Scholar
  43. Sakagami, Y. (1989). JICST science and technology classification. The Journal of Information Science and Technology Association, 39(11), 497–502.Google Scholar
  44. Schmidt, M., Glaser, J., Havemann, F., & Heinze, M. (2006). A methodological study for measuring the diversity of science. In Proceedings international workshop on webometrics, informetrics and scientometrics & seventh COLLNET meeting. Nancy.Google Scholar
  45. Shibayama, S. (2011). Distribution of academic research funds: A case of Japanese national research grant. Scientometrics, 88(1), 43–60. doi: 10.1007/s11192-011-0392-z.CrossRefMathSciNetGoogle Scholar
  46. Shimada, Y., Tsukada, N., & Suzuki, J. (2017). Promoting diversity in science in Japan through mission-oriented research grants. Scientometrics, 110(3), 1415–1435. doi: 10.1007/s11192-016-2224-7.CrossRefGoogle Scholar
  47. Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society, Interface, 4(15), 707–719. doi: 10.1098/rsif.2007.0213.CrossRefGoogle Scholar
  48. The World Bank. (2017). World Development Indicators. Retrieved from http://data.worldbank.org/data-catalog/world-development-indicators.
  49. Trajtenberg, M., Henderson, R., & Jaffe, A. (1997). University versus corporate patents: A window on the basicness of invention. Economics of Innovation and New Technology. doi: 10.1080/10438599700000006.Google Scholar
  50. Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 342, 468–472. doi: 10.1126/science.1240474.CrossRefGoogle Scholar
  51. Van Noorden, R. (2015). Interdisciplinary research by the numbers. Nature, 525, 306–307.CrossRefGoogle Scholar
  52. Voutilainen, A., & Kangasniemi, M. (2015). Applying the ecological Shannon’s diversity index to measure research collaboration based on coauthorship: A pilot study. Journal of Scientometric Research, 4, 172–177. doi: 10.4103/2320-0057.174866.CrossRefGoogle Scholar
  53. Wagner, S. C. (2010). Keystone species. Nature Education Knowledge, 3(10), 51. doi: 10.1007/978-3-642-58001-7_11.Google Scholar
  54. Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14–26. doi: 10.1016/j.joi.2010.06.004.CrossRefGoogle Scholar
  55. Williams, K. Y., & O’Reilly, C. A. (1998). Demography and diversity in organizations: A review of 40 years of research. Research in Organizational Behavior, 20, 77–140.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.National Graduate Institute for Policy Studies (GRIPS)TokyoJapan
  2. 2.Center for Research and Development Strategy (CRDS)Japan Science and Technology AgencyTokyoJapan

Personalised recommendations