Advertisement

Scientometrics

, Volume 113, Issue 2, pp 985–1008 | Cite as

A longitudinal study of intellectual cohesion in digital humanities using bibliometric analyses

  • Muh-Chyun Tang
  • Yun Jen Cheng
  • Kuang Hua Chen
Article

Abstract

As digital humanities continues to expand and become more inclusive, little is known about the extent to which its knowledge is integrated. A bibliometric analysis of published literature in digital humanities was conducted to examine the degree of its intellectual cohesion over time (1989–2014). Co-authorship, article co-citation, and bibliographic coupling networks were generated so SNA based cohesion analysis can be applied. Modularity maximization partition was also performed to both co-citation and “author bibliographic coupling” networks to identify main research interests manifested in the literature. The results show that, as publications in digital humanities continue to grow, its diversity and coherence, two hallmarks of interdisciplinarity, have shown signs of becoming more robust. The co-author network, however, remained rather fragmented, with collaboration mainly limited by language and geographic boundaries. The domain specific practices in digital humanities that might contribute to such fragmentation was discussed.

Keywords

Digital humanities Co-citation analysis Co-author network Network cohesion Interdisciplinarity Bibliographic coupling Intellectual cohesion Knowledge integration 

References

  1. Acedo, F. J., Barroso, C., Casanueva, C., & Galán, J. L. (2006a). Co-authorship in management and organizational studies: An empirical and network analysis. Journal of Management Studies, 43(5), 957–983.CrossRefGoogle Scholar
  2. Acedo, F. J., Barroso, C., & Galan, J. L. (2006b). The resource-based theory: dissemination and main trends. Strategic Management Journal, 27(7), 621–636.CrossRefGoogle Scholar
  3. Archambault, É., Vignola-Gagné, É., Côté, G., Larivière, V., & Gingras, Y. (2005). Welcome to the linguistic warp zone: Benchmarking scientific output in the social sciences and humanities. In Proceedings of the ISSI 2005 conference (pp. 24–28).Google Scholar
  4. Åström, F. (2007). Changes in the LIS research front: Time-sliced co-citation analyses of LIS journal articles, 1990–2004. Journal of the American Society for Information Science and Technology, 58(7), 947–957.CrossRefGoogle Scholar
  5. Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.CrossRefGoogle Scholar
  6. Bordons, M., Morillo, F., & Gómez, I. (2004). Analysis of cross-disciplinary research through bibliometric tools. In H. F. Moed, W. Glänzel & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 437–456). Dordrecht: Kluwer.Google Scholar
  7. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for windows: Software for social network analysis. Harvard, MA: Analytic Technologies.Google Scholar
  8. Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389–2404.CrossRefGoogle Scholar
  9. Carolan, B. V. (2008). The structure of educational research: The role of multivocality in promoting cohesion in an article interlock network. Social Networks, 30(1), 69–82.CrossRefGoogle Scholar
  10. Condliffe Lagemann, E. (1989). The plural worlds of educational research. History of Education Quarterly, 29(2), 183–214.Google Scholar
  11. Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, scopus, web of science, and google scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342.CrossRefGoogle Scholar
  12. Fry, J. (2006). Scholarly research and information practices: A domain analytic approach. Information Processing and Management, 42(1), 299–316.CrossRefGoogle Scholar
  13. Gondal, N. (2011). The local and global structure of knowledge production in an emergent research field: An exponential random graph analysis. Social Networks, 33(1), 20–30.MathSciNetCrossRefGoogle Scholar
  14. Leefmann, J., Levallois, C., & Hildt, E. (2016). Neuroethics 1995–2012. A bibliometric analysis of the guiding themes of an emerging research field. Frontiers in Human Neuroscience10, 336.Google Scholar
  15. Levallois, C., Clithero, J. A., Wouters, P., Smidts, A., & Huettel, S. A. (2012). Translating upwards: Linking the neural and social sciences via neuroeconomics. Nature Reviews Neuroscience, 13(11), 789–797.CrossRefGoogle Scholar
  16. Leydesdorff, L., & Salah, A. A. A. (2010). Maps on the basis of the Arts & Humanities Citation Index: The journals Leonardo and Art Journal versus “digital humanities” as a topic. Journal of the American Society for Information Science and Technology, 61(4), 787–801.Google Scholar
  17. Liu, P., & Xia, H. (2015). Structure and evolution of co-authorship network in an interdisciplinary research field. Scientometrics, 103(1), 101–134.MathSciNetCrossRefGoogle Scholar
  18. Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2008). Co-authorship networks in the digital library research community. Information Processing and Management, 41(6), 1462–1480.CrossRefGoogle Scholar
  19. McCain, K. W. (1990). Mapping authors in intellectual space: A technical overview. Journal of the American Society for Information Science, 41(6), 433.CrossRefGoogle Scholar
  20. McCain, K. W. (1998). Neural networks research in context: A longitudinal journal cocitation analysis of an emerging interdisciplinary field. Scientometrics, 41(3), 389–410.CrossRefGoogle Scholar
  21. McCarty, W. (2005). Humanities computing. Basingstoke: Palgrave Macmillan.CrossRefGoogle Scholar
  22. Milgram, S. (1967). The small world problem. Phychology Today, 1, 61–67.Google Scholar
  23. Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69(2), 213–238.CrossRefGoogle Scholar
  24. Moody, J., & White, D. R. (2003). Structural cohesion and embeddedness: A hierarchical concept of social groups. American Sociological Review, 103–127.Google Scholar
  25. Morris, S. A., & Van der Veer Martens, B. (2008). Mapping research specialties. Annual Review of Information Science and Technology, 42(1), 213–295.CrossRefGoogle Scholar
  26. Nederhof, A. J. (2006). Bibliometric monitoring of research performance in the social sciences and the humanities: A review. Scientometrics, 66(1), 81–100.MathSciNetCrossRefGoogle Scholar
  27. Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Science, 98(2), 404–409.MathSciNetCrossRefMATHGoogle Scholar
  28. Porter, A., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.CrossRefGoogle Scholar
  29. Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.CrossRefGoogle Scholar
  30. Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.CrossRefGoogle Scholar
  31. Rawlings, C. M., McFarland, D. A., Dahlander, L., & Wang, D. (2015). Streams of thought: Knowledge flows and intellectual cohesion in a multidisciplinary era. Social Forces, 93(4), 1687–1722.CrossRefGoogle Scholar
  32. Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society, Interface, 4(15), 707–719.CrossRefGoogle Scholar
  33. Svensson, P. (2010). The landscape of digital humanities. Digital Humanities, 4(1).Google Scholar
  34. Vidgen, R., Henneberg, S., & Naudé, P. (2007). What sort of community is the European Conference on Information Systems? A social network analysis 1993–2005. European Journal of Information Systems, 16(1), 5–19.CrossRefGoogle Scholar
  35. Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14–26.CrossRefGoogle Scholar
  36. Wang, X., & Inaba, M. (2009). Analyzing structures and evolution of digital humanities based on correspondence analysis and co-word analysis.アート・リサーチ, 9, 123–134.Google Scholar
  37. Watts, D. J. (1999). Networks, dynamics, and the small-world phenomenon. American Journal of sociology, 105(2), 493–527.CrossRefGoogle Scholar
  38. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440.CrossRefMATHGoogle Scholar
  39. White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355.Google Scholar
  40. Whitley, R. (2000). The social and intellectual organization of the sciences. Oxford: Oxford University Press.Google Scholar
  41. Yan, E., & Ding, Y. (2012). Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other. Journal of the American Society for Information Science and Technology, 63(7), 1313–1326.CrossRefGoogle Scholar
  42. Zhao, D., & Strotmann, A. (2008). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070–2086.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Library and Information ScienceNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations