, Volume 113, Issue 1, pp 335–367 | Cite as

Discovering interdisciplinary interactions between two research fields using citation networks

  • Kavitha Karunan
  • Hiran H. Lathabai
  • Thara Prabhakaran


As more and more interdisciplinary areas are emerging at a quick pace, analysis of interdisciplinary interactions among disciplines is of great importance. Citation network analysis is advancing as a tool to extricate policy implications from scientific as well as patent literature. Most of the studies related to interdisciplinarity under the lens of network analysis were concentrated mainly on journal–journal citation networks. Citation networks of articles reflect the accumulation as well as flow of knowledge. Therefore, specific developments that might cause interdisciplinary evolution can be identified. Due to this underexplored potential, we attempt to investigate interdisciplinarity at the level of published articles. As the interdisciplinary interactions among two disciplines is reflected by common/boundary papers and the arcs of cross-disciplinary citations, a quantitative methodology for assessing the strength of interdisciplinary interactions, dominant mode of interaction, mutual contribution, etc., is developed based on these. Interdisciplinary interactions among the fields ‘biotechnology for energy’ and ‘nanotechnology for energy’ is chosen as a case study. The existence of ‘mutual contribution’ among these fields is identified. ‘Biotechnology for energy’ is found to contribute more to the development of ‘nanotechnology for energy’ than vice versa. Important specific developments associated with interdisciplinary interactions are also explored using qualitative decision rules. Quantitative as well as qualitative methods devised in this paper form a framework for interdisciplinarity assessment that can be used by various decision makers.


Interdisciplinarity Citation network analysis Nanotechnology Biotechnology Energy Mutual contribution 



This work is funded by the ‘Innovative programmmes/Research projects’ scheme, State Plan Grant (No. P1.A1/1074/DFS/17), Govt. of Kerala.


  1. Amancio, D. R., Nunes, M. G. V., Oliveira, O. N., & Costa, L. F. (2012). Using complex networks concepts to assess approaches for citations in scientific papers. Scientometrics, 91(3), 827–842.CrossRefGoogle Scholar
  2. Bastian, M., Heymann, S., Jacomy, M., et al. (2009). Gephi: an open source software for exploring and manipulating networks. Icwsm, 8, 361–362.Google Scholar
  3. Bilke, S., & Peterson, C. (2001). Topological properties of citation and metabolic networks. Physical Review E, 64(3), 036106.CrossRefGoogle Scholar
  4. Chang, Y.-W., & Huang, M.-H. (2012). A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods. Journal of the American Society for Information Science and Technology, 63(1), 22–33.CrossRefGoogle Scholar
  5. Chen, S., Arsenault, C., Gingras, Y., & Larivière, V. (2015). Exploring the interdisciplinary evolution of a discipline: The case of biochemistry and molecular biology. Scientometrics, 102(2), 1307–1323.CrossRefGoogle Scholar
  6. Price, D. J. S. (1965). Networks of scientific papers. Science, 149(3683), 510–515.CrossRefGoogle Scholar
  7. Egghe, L., & Rousseau, R. (2002). Co-citation, bibliographic coupling and a characterization of lattice citation networks. Scientometrics, 55(3), 349–361.CrossRefGoogle Scholar
  8. Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. Science, 122(3159), 108–111.CrossRefGoogle Scholar
  9. Garfield, E., Paris, S., & Stock, W. G. (2006). Histcitetm: A software tool for informetric analysis of citation linkage. Information Wissenschaft und Praxis, 57(8), 391.Google Scholar
  10. Garfield, E., Sher, I. H, & Torpie, R. J. (1964). The use of citation data in writing the history of science. Technical report, DTIC Document.Google Scholar
  11. Huutoniemi, K., Klein, J. T., Bruun, H., & Hukkinen, J. (2010). Analyzing interdisciplinarity: Typology and indicators. Research Policy, 39(1), 79–88.CrossRefGoogle Scholar
  12. Kajikawa, Y., & Mori, J. (2009). Interdisciplinary research detection by citation indicators. In IEEE International conference on industrial engineering and engineering management (pp. 84–87). IEEE.Google Scholar
  13. Katz, J S., & Hicks, D. (1995). The classification of interdisciplinary journals: A new approach. In Proceedings of the 5th international conference of the international society for scientometrics and informetrics. Learned Information, Melford. Citeseer.Google Scholar
  14. Kessler, M. M. (1963). Bibliographic coupling between scientific papers. Journal of the Association for Information Science and Technology, 14(1), 10–25.Google Scholar
  15. Klein, J. T. (2008). Evaluation of interdisciplinary and transdisciplinary research: A literature review. American Journal of Preventive Medicine, 35(2), S116–S123.CrossRefGoogle Scholar
  16. Larivière, V., & Gingras, Y. (2010). On the relationship between interdisciplinarity and scientific impact. Journal of the American Society for Information Science and Technology, 61(1), 126–131.CrossRefGoogle Scholar
  17. Leicht, E. A., Clarkson, G., Shedden, K., & Newman, M. E. J. (2007). Large-scale structure of time evolving citation networks. The European Physical Journal B-Condensed Matter and Complex Systems, 59(1), 75–83.CrossRefzbMATHGoogle Scholar
  18. Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.CrossRefGoogle Scholar
  19. Leydesdorff, L., Wagner, C. S, & Bornmann, L. (2017). Betweenness and diversity in journal citation networks as measures of interdisciplinarity–a tribute to eugene garfield. arXiv preprint arXiv:1705.03272.
  20. Lyall, C., & Meagher, L. (2008). A short guide to troubleshooting some common interdisciplinary research management challenges. Institute for the Study of Science, Technology, and Innovation. Briefing Note, (5).Google Scholar
  21. Martin, T., Ball, B., Karrer, B., & Newman, M. E. J. (2013). Coauthorship and citation in scientific publishing. arXiv preprint arXiv:1304.0473.
  22. McCain, K. W. (2014). Obliteration by incorporation. In B. Cronin & C. R. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact, pp. 129–149. Massachusetts: MIT Press.Google Scholar
  23. Merton, R. K. (1988). The matthew effect in science, ii: Cumulative advantage and the symbolism of intellectual property. isis, 79(4), 606–623.CrossRefGoogle Scholar
  24. Merton, R. K. (1965). On the shoulders of giants: A Shandean postscript. Eagle Farm: Harcourt.Google Scholar
  25. Metzger, N., & Zare, R. N. (1999). Interdisciplinary research: From belief to reality. Science, 283(5402), 642–643.CrossRefGoogle Scholar
  26. Moya-Anegón, S. C. I. G., Vargas-Quesada, B., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Munoz-Fernández, F. J., Herrero-Solana, V., et al. (2007). Visualizing the marrow of science. Journal of the American Society for Information Science and Technology, 58(14), 2167–2179.CrossRefGoogle Scholar
  27. Porter, A., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.CrossRefGoogle Scholar
  28. Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.CrossRefGoogle Scholar
  29. Rafols, I., & Meyer, M. (2007). How cross-disciplinary is bionanotechnology? Explorations in the specialty of molecular motors. Scientometrics, 70(3), 633–650.CrossRefGoogle Scholar
  30. Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.CrossRefGoogle Scholar
  31. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for information Science and Technology, 61(9), 1871–1887.CrossRefGoogle Scholar
  32. Rinia, E., van Leeuwen, T., & van Raan, A. (2002). Impact measures of interdisciplinary research in physics. Scientometrics, 53(2), 241–248.CrossRefGoogle Scholar
  33. Rinia, E. J., Van Leeuwen, T. N., Bruins, E. E. W., Van Vuren, H. G., & Van Raan, A. F. J. (2002). Measuring knowledge transfer between fields of science. Scientometrics, 54(3), 347–362.CrossRefGoogle Scholar
  34. Scardoni, G., & Laudanna, C. (2012). Centralities based analysis of complex networks. INTECH Open Access Publisher.Google Scholar
  35. Stephen, B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.MathSciNetCrossRefGoogle Scholar
  36. Valverde, S., Solé, R. V., Bedau, M. A., & Packard, N. (2007). Topology and evolution of technology innovation networks. Physical Review E, 76(5), 056118.CrossRefGoogle Scholar
  37. Eck, N. J. V., & Waltman, L. (2010). Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  38. Van R., Anthony F. J. (2003). The use of bibliometric analysis in research performance assessment and monitoring of interdisciplinary scientific developments.Google Scholar
  39. Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 5(1), 14–26.CrossRefGoogle Scholar
  40. White, H. D., Wellman, B., & Nazer, N. (2004). Does citation reflect social structure?: Longitudinal evidence from the globenet interdisciplinary research group. Journal of the American Society for information Science and Technology, 55(2), 111–126.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Futures StudiesUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations