Scientometrics

, Volume 112, Issue 1, pp 583–594 | Cite as

Allometric scaling in scientific fields

  • Hongguang Dong
  • Menghui Li
  • Ru Liu
  • Chensheng Wu
  • Jinshan Wu
Article

Abstract

Allometric scaling can reflect underlying mechanisms, dynamics and structures in complex systems; examples include typical scaling laws in biology, ecology and urban development. In this work, we study allometric scaling in scientific fields. By performing an analysis of the outputs/inputs of various scientific fields, including the numbers of publications, citations, and references, with respect to the number of authors, we find that in all fields that we have studied thus far, including physics, mathematics and economics, there are allometric scaling laws relating the outputs/inputs and the sizes of scientific fields. Furthermore, the exponents of the scaling relations have remained quite stable over the years. We also find that the deviations of individual subfields from the overall scaling laws are good indicators for ranking subfields independently of their sizes.

Keywords

Allometric scaling law Subject classification code PACS MSC JEL 

Notes

Acknowledgements

This work was supported by NSFC Grant 61374175, also partially by the Fundamental Research Funds for the Central Universities and Beijing Academy of Science and Technology Under Project Agreement OTP-2014-002. The authors thank the APS Physical Review for sharing the data.

References

  1. Batty, M. (1999). The size, scale, and shape of cities. Science, 319, 769–771. doi: 10.1126/science.1151419.CrossRefGoogle Scholar
  2. Bettencourt, L. M. A., & West, G. B. (2010). A unified theory of urban living. Nature, 467, 912–913. doi: 10.1038/467912a.CrossRefGoogle Scholar
  3. Bettencourt, L. M. A., Lobo, J., Helbing, D., Kuhnert, C., & West, G. B. (2007a). Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America, 104, 7301–7306. doi: 10.1073/pnas.0610172104.CrossRefGoogle Scholar
  4. Bettencourt, L. M. A., Lobo, J., & Strumsky, D. (2007b). Invention in the city: Increasing returns to patenting as a scaling function of metropolitan size. Research Policy, 36, 107–120. doi: 10.1016/j.respol.2006.09.026.CrossRefGoogle Scholar
  5. Bettencourt, L. M. A., Kaiser, D. I., Kaur, J., Castillo-Chavez, C., & Wojick, D. E. (2008). Population modeling of the emergence and development of scientific fields. Scientometrics, 75(3), 495–518. doi: 10.1007/s11192-007-1888-4.CrossRefGoogle Scholar
  6. Bettencourt, L. M. A., Lobo, J., Strumsky, D., & West, G. B. (2010). Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across citie. PLoS One, 5, e13,541. doi: 10.1371/journal.pone.0013541.CrossRefGoogle Scholar
  7. Brown, J. H. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771–1789. doi: 10.1890/03-9000.CrossRefGoogle Scholar
  8. Brown, J. H., & West, G. B. (2000). Scaling in biology. Oxford: Oxford University Press.MATHGoogle Scholar
  9. Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703. doi: 10.1137/070710111.MathSciNetCrossRefMATHGoogle Scholar
  10. Gao, X., & Guan, J. (2009). A scale-independent analysis of the performance of the chinese innovation system. Journal of Informetrics, 3, 321–331. doi: 10.1016/j.joi.2009.04.004.CrossRefGoogle Scholar
  11. Herrera, M., Roberts, D. C., & Gulbahce, N. (2010). Mapping the evolution of scientific fields. PLoS One, 5, e10,355. doi: 10.1371/journal.pone.0010355.CrossRefGoogle Scholar
  12. Katz, J. S. (1999). The self-similar science system. Research Policy, 28, 501–517. doi: 10.1016/S0048-7333(99)00010-4.CrossRefGoogle Scholar
  13. Katz, J. S. (2000). Scale-independent indicators and research evaluation. Science Public Policy, 27, 23–36. doi: 10.3152/147154300781782156.CrossRefGoogle Scholar
  14. Katz, J. S. (2006). Indicators for complex innovation systems. Research Policy, 35, 893–909. doi: 10.1016/j.respol.2006.03.007.CrossRefGoogle Scholar
  15. Katz, J. S. (2016). What is a complex innovation system? PLOS One, 11(6), e0156,150. doi: 10.1371/journal.pone.0156150.CrossRefGoogle Scholar
  16. Kleiber, M. (1932). Body size and metabolism. Hilgardia, 6, 315–353.CrossRefGoogle Scholar
  17. Kuhnert, C., Helbing, D., & West, G. B. (2006). Scaling laws in urban supply networks. Physica A, 363, 96–103. doi: 10.1016/j.physa.2006.01.058.CrossRefGoogle Scholar
  18. Lammer, S., Gehlsena, B., & Helbing, B. (2006). Scaling laws in the spatial structure of urban road networks. Physica A, 363, 89–95. doi: 10.1016/j.physa.2006.01.051.CrossRefGoogle Scholar
  19. Lee, Y. (1989). An allometric analysis of the us urban system: 1960–80. Environment and Planning A, 21, 463–476. doi: 10.1068/a210463.CrossRefGoogle Scholar
  20. Levine, D. K. (2016). What is game theory? http://www.dklevine.com/general/whatis.htm. Accessed 20 Dec 2016.
  21. Milojević, S. (2010). Power law distributions in information science: Making the case for logarithmic binning. Journal of the American Society for Information Science and Technology, 61(12), 2417–2425. doi: 10.1002/asi.21426.CrossRefGoogle Scholar
  22. Milojević, S. (2013). Accuracy of simple, initials-based methods for author name disambiguation. Journal of Informetrics, 7, 767–773. doi: 10.1016/j.joi.2013.06.006.CrossRefGoogle Scholar
  23. Naroll, R., & von Bertalanffy, L. (1956). The principle of allometry in biology and the social sciences. General Systems Yearbook, 1, 76–89.Google Scholar
  24. Nicholls, P. T. (1987). Estimation of zipf parameters. Journal of the American Society for Information Science and Technology, 38(6), 443–445. doi: 10.1002/(SICI)1097-4571(198711)38:6<443::AID-ASI4>3.0.CO;2-E.CrossRefGoogle Scholar
  25. Nomaler, O., Frenken, K., & Heimeriks, G. (2014). On scaling of scientific knowledge production in US metropolitan areas. PLoS One, 9(10), e110,805. doi: 10.1371/journal.pone.0110805.CrossRefGoogle Scholar
  26. Ortman, S. G., Cabaniss, A. H. F., Sturm, J. O., & Bettencourt, L. M. A. (2015). Settlement scaling and increasing returns in an ancient society. Science Advances, 1, e1400,066. doi: 10.1126/sciadv.1400066.CrossRefGoogle Scholar
  27. Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B-Condensed Matter and Complex Systems, 4, 131–134. doi: 10.1007/s100510050359.CrossRefGoogle Scholar
  28. Van Raan, A. F. J. (2006a). Statistical properties of bibliometric indicators: Research group indicator distributions and correlations. Journal of the American Society for Information Science and Technology, 57, 408–430. doi: 10.1002/asi.20284.CrossRefGoogle Scholar
  29. Van Raan, A. F. J. (2006b). Performance-related differences of bibliometric statistical properties of research groups: Cumulative advantages and hierarchically layered networks. Journal of the American Society for Information Science and Technology, 57, 1919–1935. doi: 10.1002/asi.20389.CrossRefGoogle Scholar
  30. Van Raan, A. F. J. (2008a). Bibliometric statistical properties of the 100 largest european research universities: Prevalent scaling rules in the science system. Journal of the American Society for Information Science and Technology, 59, 461–475. doi: 10.1002/asi.20761.CrossRefGoogle Scholar
  31. Van Raan, A. F. J. (2008b). Scaling rules in the science system: Influence of fieldspecific citation characteristics on the impact of research groups. Journal of the American Society for Information Science and Technology, 59, 565–576. doi: 10.1002/asi.20765.CrossRefGoogle Scholar
  32. Van Raan, A. F. J. (2013). Universities scale like cities. PLoS One, 8, e59,384. doi: 10.1371/journal.pone.0059384.CrossRefGoogle Scholar
  33. West, G. B., & Brown, J. H. (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization. The Journal of Experimental Biology, 208, 1575–1592. doi: 10.1242/jeb.01589.CrossRefGoogle Scholar
  34. West, G. B., Brown, J. H., & Enquist, B. J. (1999). The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science, 284, 1677–1679. doi: 10.1126/science.284.5420.1677.MathSciNetCrossRefMATHGoogle Scholar
  35. Zhang, J., & Yu, T. (2010). Allometric scaling of countries. Physica A, 389, 4887–4896. doi: 10.1016/j.physa.2010.06.059.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Division of Natural Science Academic PublishingHigher Education PressBeijingPeople’s Republic of China
  2. 2.Beijing Institute of Science and Technology InformationBeijingPeople’s Republic of China
  3. 3.School of Systems ScienceBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations