, Volume 110, Issue 3, pp 1633–1652 | Cite as

Growth of international collaboration in science: revisiting six specialties

  • Caroline S. Wagner
  • Travis A. Whetsell
  • Loet Leydesdorff


International collaboration in science continues to grow at a remarkable rate, but little agreement exists about dynamics of growth and organization at the discipline level. Some suggest that disciplines differ in their collaborative tendencies, reflecting their epistemic culture. This study examines collaborative patterns in six previously studied specialties to add new data and analyze patterns over time. Our findings show that a global network of collaboration continues to add new nations and new participants; since 1990, each specialty has added many new nations to lists of collaborating partners. We also find that the scope of international collaboration is positively related to impact. Network characteristics for the six specialties are notable in that instead of reflecting underlying culture, they tend towards convergence at the global level. This observation suggests that the global level may represent next-order dynamics that feed back to the national and local levels (as subsystems) in a complex, networked hierarchy.


Network structure Science Organization Hierarchy Nation Governance 



We wish to thank Jeroen Bass at Elsevier for assistance in developing the data for the global level and for the specialties for 2008 and 2013. We thank Meng Li for assistance with statistical analysis.


  1. Abt, H. A. (2007). The frequencies of multinational papers in various sciences. Scientometrics, 72(1), 105–115.CrossRefGoogle Scholar
  2. Adams, J. (2012). Collaborations: The rise of research networks. Nature, 490(7420), 335–336.CrossRefGoogle Scholar
  3. Adams, J. (2013). The fourth age of research. Nature, 497, 557–559.CrossRefGoogle Scholar
  4. Adams, J. Black, G, Clemmons, R. Stephan, P. Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981–1999 (2005), Research Policy 34, 259-285.Google Scholar
  5. Barabási, A. L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311(3–4), 590–614.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Barjak, F., & Robinson, S. (2008). International collaboration, mobility and team diversity in the life sciences: impact on research performance. Social Geography, 3(1), 23–36.CrossRefGoogle Scholar
  7. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). UCInet for windows: Software for social network analysis. Harvard: Analytic Technologies.Google Scholar
  8. Bornmann, L., Wagner, C., & Leydesdorff, L. (2015). BRICS countries and scientific excellence: A bibliometric analysis of most frequently cited papers. Journal of the Association for Information Science and Technology, 66(7), 1507–1513.CrossRefGoogle Scholar
  9. Choi, S. (2012). Core-periphery, new clusters, or rising stars? international scientific collaboration among ‘advanced’ countries in the era of globalization. Scientometrics, 90(1), 25–41.CrossRefGoogle Scholar
  10. Choi, S., Yang, J. S., & Park, H. W. (2015). The triple helix and international collaboration in science. Journal of the Association for Information Science and Technology, 66(1), 201–212.CrossRefGoogle Scholar
  11. De Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek (Vol. 27). Cambridge University Press.Google Scholar
  12. De Solla Price, D. J., & Beaver, D. (1966). Collaboration in an invisible college. American Psychologist, 21(11), 1011.CrossRefGoogle Scholar
  13. Doré, J.-C., Ojasoo, T., & Okubo, Y. (1996). Correspondence factorial analysis of the publication patterns of 48 countries over the period 1981–1992. Journal of the American Society for Information Science, 47(8), 588–602.CrossRefGoogle Scholar
  14. Folke, C., Hahn, T., Olsson, P., & Norberg, J. (2005). Adaptive governance of social-ecological systems. Annual Review of Environment and Resources, 30, 441–473.CrossRefGoogle Scholar
  15. Frenken, K., Hoekman, J., Kok, S., Ponds, R., van Oort, F., & van Vliet, J. (2009). Death of distance in science? A gravity approach to research collaboration. In Innovation networks (pp. 43-57). Springer Berlin Heidelberg.Google Scholar
  16. Gazni, A., Sugimoto, C. R., & Didegah, F. (2012). Mapping world scientific collaboration: Authors, institutions, and countries. Journal of the American Society for Information Science and Technology, 63(2), 323–335.CrossRefGoogle Scholar
  17. Gilsing, V., Nooteboom, B., Vanhaverbeke, W., Duysters, G., & van den Oord, A. (2008). Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Research Policy, 37(10), 1717–1731.CrossRefGoogle Scholar
  18. Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Glänzel, W., & De Lange, C. (2002). A distributional approach to multinationality measures of international scientific collaboration. Scientometrics, 54, 75–89.CrossRefGoogle Scholar
  20. Glänzel, W., & Schubert, A. (2001). Double effort = double impact? A critical view at international co-authorship in chemistry. Scientometrics, 50(2), 199–214.CrossRefGoogle Scholar
  21. Glänzel, W., & Schubert, A. (2005). Domesticity and internationality in co-authorship, references and citations. Scientometrics, 65(3), 323–342.CrossRefGoogle Scholar
  22. Halevi, G., Moed, H. F., & Bar-Ilan, J. (2016). Researchers’ mobility, productivity and impact: Case of top producing authors in seven disciplines. Publishing Research Quarterly, 32(1), 22–37.CrossRefGoogle Scholar
  23. He, T. (2009). International scientific collaboration of China with the G7 countries. Scientometrics, 80(3), 571–582.CrossRefGoogle Scholar
  24. Hoekman, J., Frenken, K., & Tijssen, R. J. (2010). Research collaboration at a distance: Changing spatial patterns of scientific collaboration within Europe. Research Policy, 39(5), 662–673.CrossRefGoogle Scholar
  25. Jeong, H., Néda, Z., & Barabási, A. L. (2003). Measuring preferential attachment in evolving networks. EPL (Europhysics Letters), 61(4), 567.CrossRefGoogle Scholar
  26. Jonkers, K., & Cruz-Castro, L. (2013). Research upon return: The effect of international mobility on scientific ties, production and impact. Research Policy, 42(8), 1366–1377.CrossRefGoogle Scholar
  27. Katz, J. (1994). Geographical proximity and scientific collaboration. Scientometrics, 31(1), 31–43.CrossRefGoogle Scholar
  28. Kontopoulos, K. M. (1993). The logics of social structure. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. Luukkonen, T., Persson, O., & Sivertsen, G. (1992). Understanding patterns of international scientific collaboration. Science, Technology and Human Values, 17(1), 101–126.CrossRefGoogle Scholar
  30. Mattsson, P., Laget, P., Nilsson, A., & Sundberg, C. J. (2008). Intra-EU vs. Extra-EU scientific co-publication patterns in EU. Scientometrics, 75(3), 555–574.CrossRefGoogle Scholar
  31. Miquel, J. F., & Okubo, Y. (1994). Structure of international collaboration in sciences. Comparisons of profiles in countries using a link indicator, Scientometrics, 29, 271–294.Google Scholar
  32. Monge, P. R., & Contractor, N. S. (2003). Theories of communication networks. USA: Oxford University Press.Google Scholar
  33. Narin, F., Stevens, K., & Whitlow, E. (1991). Scientific co-operation in Europe and the citation of multinationally authored papers. Scientometrics, 21(3), 313–323.CrossRefGoogle Scholar
  34. Newman, M. E. (2001a). Clustering and preferential attachment in growing networks. Physical Review E, 64(2), 025102.CrossRefGoogle Scholar
  35. Newman, M. E. (2001b). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404–409.MathSciNetCrossRefzbMATHGoogle Scholar
  36. Padgett, J. F., & Powell, W. W. (2012). The emergence of organizations and markets. Princeton: University Press.Google Scholar
  37. Palla, G., Barabási, A. L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446(7136), 664–667.CrossRefGoogle Scholar
  38. Persson, O., Glänzel, W., & Danell, R. (2004). Inflationary bibliometric values: The role of scientific collaboration and the need for relative indicators in evaluative studies. Scientometrics, 60(3), 421–432.CrossRefGoogle Scholar
  39. Ponds, R. (2009). The limits to internationalization of scientific research collaboration. The Journal of Technology Transfer, 34(1), 76–94.CrossRefGoogle Scholar
  40. Scott, J. (2000). Social network analysis. London: Sage Publications.Google Scholar
  41. Simon, H. A. (1977). The organization of complex systems. In Models of discovery (pp. 245–261). Netherlands: Springer.Google Scholar
  42. Simon, H. A. (1991). The architecture of complexity. In G. Klir (Ed.), Facets of Systems Science. International Federation for Systems Research International Series on Systems Science and Engineering (Vol. 7, pp. 457–476). US: Springer.Google Scholar
  43. Sonnenwald, D. H. (2007). Scientific collaboration. Annual review of information science and technology, 41(1), 643–681.CrossRefGoogle Scholar
  44. Valverde, S., & Solé, R. V. (2007). Self-organization versus hierarchy in open-source social networks. Physical Review E, 76(4), 046118.CrossRefGoogle Scholar
  45. Wagner, C. S. (2005). Six case studies of international collaboration in science. Scientometrics, 62(1), 3–26.CrossRefGoogle Scholar
  46. Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618.CrossRefGoogle Scholar
  47. Wagner, C. S., Park, H. W., Leydesdorff, L., & Glanzel, W. (2015). The continuing growth of global cooperation networks in research: A conundrum for national governments. PLOS ONE, 10(7), e0131816.CrossRefGoogle Scholar
  48. Whitley, R. (1984). The intellectual and social organisation of the sciences. Oxford: Oxford University Press.Google Scholar
  49. Wuchty, S., Jones, B. F., & Uzzi, B. (2007a). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.CrossRefGoogle Scholar
  50. Wuchty, S., Jones, B. F., & Uzzi, B. (2007b). Supporting online materials for the increasing dominance of teams in production of knowledge.
  51. Zeng, S. X., Xie, X. M., & Tam, C. M. (2010). Relationship between cooperation networks and innovation performance of SMEs. Technovation, 30(3), 181–194.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.John Glenn College of Public Affairs, Battelle Center for Science and Technology PolicyThe Ohio State UniversityColumbusUSA
  2. 2.Amsterdam School of Communication Research (ASCoR)University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations