Advertisement

Scientometrics

, Volume 110, Issue 2, pp 779–790 | Cite as

Mapping research spotlights for different regions in China

  • Zhigang Hu
  • Fangqi Guo
  • Haiyan Hou
Article

Abstract

To reveal China’s regional disparity both in research output and preferential research areas is the main purpose of this study. For this study, we investigated the research outputs of all 31 regions (27 provinces and 4 municipalities) in mainland China. The investigated dataset was sourced from CNKI, one of China’s largest domestic academic databases. To measure research preferences between regions, we used the function of cosine distance rather than Euclidean distance. Clustering method was employed to classify the regions according to their similarity/disparity. In the end, six clusters were generated. Each cluster is different in research preferences. For example, Inner Mongolia in Cluster D is featured with the emphasis on animal handcraft; while Hubei province in Cluster A is characterized by a wide range of research areas.

Keywords

Research preference China CNKI Cluster VosViewer 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 71503031) and the China Postdoctoral Science Foundation (Grant No. 2016M591435). We gratefully acknowledge the review and inspired comments by an anonymous reviewer on an earlier version of the manuscript.

References

  1. Andersson, D. E., Andersson, E., & Mellander, C. (2011). Handbook of creative cities. Cheltenham: Edward Elgar Publishing.CrossRefGoogle Scholar
  2. Andersson, D. E., Gunessee, S., & Matthiessen, C. W. (2014). The geography of Chinese science. Environment and Planning a, 46(12), 2950–2971.CrossRefGoogle Scholar
  3. Bornmann, L., Leydesdorff, L., Walch-Solimena, C., & Ettl, C. (2011). Mapping excellence in the geography of science: An approach based on Scopus data. Journal of Informetrics, 5(4), 537–546. doi: 10.1016/j.joi.2011.05.005.CrossRefGoogle Scholar
  4. Gao, X., Guo, X., Sylvan, K. J., & Guan, J. (2010). The Chinese innovation system during economic transition: A scale-independent view. Journal of Informetrics, 4(4), 618–628. doi: 10.1016/j.joi.2010.07.001.CrossRefGoogle Scholar
  5. Guan, J., & Gao, X. (2008). Comparison and evaluation of Chinese research performance in the field of bioinformatics. Scientometrics, 75(2), 357–379. doi: 10.1007/s11192-007-1871-0.CrossRefGoogle Scholar
  6. Guan, J., & He, Y. (2005). Comparison and evaluation of domestic and international outputs in Information Science and Technology research of China. Scientometrics, 65(2), 215–244. doi: 10.1007/s11192-005-0269-0.CrossRefGoogle Scholar
  7. Guan, J., & Ma, N. (2007a). A bibliometric study of China’s semiconductor literature compared with other major asian countries. Scientometrics, 70(1), 107–124. doi: 10.1007/s11192-007-0107-7.CrossRefGoogle Scholar
  8. Guan, J., & Ma, N. (2007b). China’s emerging presence in nanoscience and nanotechnology: A comparative bibliometric study of several nanoscience “giants”. Research Policy, 36(6), 880–886. doi: 10.1016/j.respol.2007.02.004.CrossRefGoogle Scholar
  9. Guan, J., & Wang, G. (2010). A comparative study of research performance in nanotechnology for China’s inventor-authors and their non-inventing peers. Scientometrics, 84(2), 331–343. doi: 10.1007/s11192-009-0140-9.CrossRefGoogle Scholar
  10. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM Computing Surveys (CSUR), 31(3), 264–323.CrossRefGoogle Scholar
  11. Kostoff, R. (2008). Comparison of China/USA science and technology performance☆. Journal of Informetrics, 2(4), 354–363. doi: 10.1016/j.joi.2008.06.004.CrossRefGoogle Scholar
  12. Leydesdorff, L., & Persson, O. (2009). Mapping the geography of science: Distribution patterns and networks of relations among cities. Journal of the American Society for Information Science and Technology, 61(8), 1622–1634. doi: 10.1002/asi.Google Scholar
  13. Moiwo, J. P., & Tao, F. (2012). The changing dynamics in citation index publication position China in a race with the USA for global leadership. Scientometrics, 95(3), 1031–1050. doi: 10.1007/s11192-012-0846-y.CrossRefGoogle Scholar
  14. Sebag-Montefiore, C. (2012). Focus on China: A tale of two cities. Retrieved from http://www.sciencemag.org/careers/features/2012/09/focus-china-tale-two-cities.
  15. Tian, P. (2015). Three giants tighten their grip. Nature, 528(7582), S176–S178. doi: 10.1038/528S176a.CrossRefGoogle Scholar
  16. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  17. Wang, L. (2016). The structure and comparative advantages of China’s scientific research: Quantitative and qualitative perspectives. Scientometrics, 106(1), 435–452. doi: 10.1007/s11192-015-1650-2.MathSciNetCrossRefGoogle Scholar
  18. Wang, G., & Guan, J. (2010). The role of patenting activity for scientific research: A study of academic inventors from China’s nanotechnology. Journal of Informetrics, 4(3), 338–350. doi: 10.1016/j.joi.2010.02.002.CrossRefGoogle Scholar
  19. Xie, Y., Zhang, C., & Lai, Q. (2014). China’s rise as a major contributor to science and technology. Proceedings of the National Academy of Sciences, 111(26), 9437–9442.CrossRefGoogle Scholar
  20. Yang, S., Ma, F., Song, Y., & Qiu, J. (2010). A longitudinal analysis of citation distribution breadth for Chinese scholars. Scientometrics, 85(3), 755–765. doi: 10.1007/s11192-010-0245-1.CrossRefGoogle Scholar
  21. Zhou, Y. (2015). The rapid rise of a research nation. Nature, 528(7582), S170–S173. doi: 10.1038/528S170a.CrossRefGoogle Scholar
  22. Zhou, P., & Leydesdorff, L. (2006). The emergence of China as a leading nation in science. Research Policy, 35(1), 83–104.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.WISE LabDalian University of TechnologyDalianChina
  2. 2.Institute of Science of Science and S&T ManagementDalian University of TechnologyDalianChina

Personalised recommendations