Scientometrics

, Volume 109, Issue 3, pp 1835–1853 | Cite as

A comparative study on three citation windows for detecting research fronts

Article
  • 433 Downloads

Abstract

Research fronts represent areas of cutting-edge study in specific fields. They not only provide insights into current focuses and future trends, but also serve as crucial indicators for technology-related government policymaking. This study examined research fronts by using three citation window types (i.e., fixed citation windows, citing half life, and sliding windows). Organic light-emitting diodes (OLEDs) were adopted as the research area in comparing the evolution and development of research fronts from the three citation windows. The bibliographic coupling method was applied to identify the research fronts by using 210 highly cited articles in OLED research. The results indicated that among the three citation windows, sliding windows returned the highest number of research fronts, hence exhibiting maximal effectiveness. Furthermore, regarding effectiveness in detecting emerging fronts, both fixed citation windows and citing half life identified four emerging fronts, whereas sliding windows identified 11 emerging fronts, demonstrating optimal effectiveness.

Keywords

Research fronts Bibliographic coupling Citation windows Fixed window Sliding window Citing half life OLED 

References

  1. Aguillo, I. F. (1996). Increasing the between-year stability of the impact factor in the science citation index. Scientometrics, 35(2), 279–282.CrossRefGoogle Scholar
  2. Åström, F. (2007). Changes in the LIS research front: Time-sliced cocitation analyses of LIS journal articles, 1990–2004. Journal of the American Society for Information Science and Technology, 58(7), 947–957.CrossRefGoogle Scholar
  3. Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389–2404.CrossRefGoogle Scholar
  4. Boyack, K. W., Tsao, J. Y., Miksovic, A., & Huey, M. (2009). A recursive process for mapping and clustering technology literatures: Case study in solid-state lighting. International Journal of Technology Transfer and Commercialisation, 8(1), 51–87.CrossRefGoogle Scholar
  5. Buckley, A. (2013). Organic light-emitting diodes (OLEDs): Materials, devices and applications. Cambridge: Woodhead.CrossRefGoogle Scholar
  6. Campanario, J. M. (2011). Empirical study of journal impact factors obtained using the classical two-year citation window versus a five-year citation window. Scientometrics, 87(1), 189–204.CrossRefGoogle Scholar
  7. Chang, Y. W., Huang, M. H., & Lin, C. W. (2015). Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses. Scientometrics, 105(3), 2071–2087.CrossRefGoogle Scholar
  8. Chen, C. (2005). Measuring the movement of a research paradigm. In Proceedings of the SPIE-IS&T: Visualization and data analysis (pp. 63–76). San Jose, CA: The International Society for Optical Engineering.Google Scholar
  9. Chen, C. H., & Hwang, S. W. (2005). Organic electroluminescent materials & devices. Taipei: Wu-Nan Culture Enterprise.Google Scholar
  10. Chen, C. H., & Hwang, S. W. (2007). OLED: Materials and devices of dream displays. Taipei: Wu-Nan Culture Enterprise.Google Scholar
  11. Chen, C., & Morris, S. A. (2003). Visualizing evolving networks: Minimum spanning trees versus pathfinder networks. In Proceedings of IEEE symposium on information visualization (pp. 67–74). Seattle, Washington, DC: IEEE Computer Society Press.Google Scholar
  12. Chien, C. H., & Chen, C. H. (2001). OLED flat panel display technology. Physical Biomonthly, 23(2), 307–311.Google Scholar
  13. Chizu, S., Yoshiake T., Takeshi, Y., Makoto, K., & Shuji, D. (2014). Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Retrieved September 3, 2014, from http://iopscience.iop.org/1468-6996/15/3/034203/pdf/1468-6996_15_3_034203.pdf.
  14. Cornelius, B., LandstrÖm, H., & Persson, O. (2006). Entrepreneurial studies: The dynamic research front of a developing social science. Entrepreneurship Theory and Practice, 30(3), 375–398.CrossRefGoogle Scholar
  15. Divayana, Y. (2011). Electroluminescence in organic light-emitting diodes: Basics, processes, and optimizations. Saarbrücken: VDM.Google Scholar
  16. Fujita, K., Kajikawa, Y., Mori, J., & Sakata, I. (2012). Detecting research fronts using different types of combinational citation. Retrieved September 19, 2014, from http://sticonference.org/Proceedings/vol1/Fujita_Detecting_273.pdf.
  17. Fujita, K., Kajikawa, Y., Mori, J., & Sakata, I. (2014). Detecting research fronts using different types of weighted citation networks. Journal of Engineering and Technology Management, 123, 415–423.Google Scholar
  18. Fukagawa, H., Watanabe, K., Tsuzuki, T., & Tokito, S. (2008). Highly efficient, deep-blue phosphorescent organic light emitting diodes with a double-emitting layer structure. Applied Physics Letters, 93(13), 133312.CrossRefGoogle Scholar
  19. Glänzel, W. (2012). Bibliometric mothods for detecting and analyzing emerging research topics. Retrieved August 29, 2014, from http://eprints.rclis.org/16947/1/Bibliometric%20methods.pdf.
  20. Glänzel, W., & Schoepflin, U. (1995). A bibliometric study on aging and reception processes of scientific literature. Journal of Information Science, 21, 37–53.CrossRefGoogle Scholar
  21. Guo, H., Weingart, S., & Börner, K. (2011). Mixed-indicators model for identifying emerging research areas. Scientometrics, 89(1), 421–435.CrossRefGoogle Scholar
  22. Huang, M. H., & Chang, C. P. (2014). Detecting research fronts in OLED field using bibliographic coupling with sliding window. Scientometrics, 98(3), 1721–1744.CrossRefGoogle Scholar
  23. Huang, M. H., & Chang, C. P. (2015). A comparative study on detecting research fronts in the organic light-emitting diode (OLED) field using bibliographic coupling and co-citation. Scientometrics, 102(3), 2041–2057.CrossRefGoogle Scholar
  24. Hwang, S. W., & Chen, C. H. (2004). Organic light emitting diode: OLED. Taipei: National Science Council.Google Scholar
  25. Iftikhar, M., Masood, S., & Song, T. T. (2012). Modified impact factor (MIF) at specialty level: A way forward. Procedia—Social and Behavioral Sciences, 69, 631–640.CrossRefGoogle Scholar
  26. Jacsó, P. (2009). Five-year impact factor data in the journal citation reports. Online Information Review, 33(3), 603.CrossRefGoogle Scholar
  27. Kajikawa, Y., & Takeda, Y. (2009). Citation network analysis of organic LEDs. Technological Forecasting and Social Change, 76(8), 1115–1123.CrossRefGoogle Scholar
  28. Kamtekar, K. T., Mankman, A. P., & Bryce, M. R. (2010). Recent advances in white organic light-emitting materials and devices (WOLEDs). Advanced Materials, 22, 572–582.CrossRefGoogle Scholar
  29. Knoke, D., & Yang, S. (2008). Social network analysis (2nd ed.). Los Angeles: Sage.CrossRefGoogle Scholar
  30. Koo, H. S. (2006). The techniques and applications for OLEDs. Taipei: New Wun Ching Developmental.Google Scholar
  31. Koo, H. S. (2008). The techniques and applications for OLEDs (2nd ed.). Taipei: New Wun Ching Developmental.Google Scholar
  32. Krell, F. T. (2012). The journal imact factor as a performance indicator. Retrieved September 5, from http://www.ease.org.uk/sites/default/files/essay_thorsten-krell.pdf.
  33. Lin, J. S. (2009). Technology of white organic light emitting diode. Chemical Monthly, 78, 26–35.Google Scholar
  34. Liu, J., Min, C., Zhou, Q., Cheng, Y., Wang, L., Ma, D., et al. (2006). Blue light-emitting polymer with polyfluorene as the host and highly fluorescent 4-dimethylamino-1,8-naphthalimide as the dopant in the sidechain. Applied Physics Letters, 88(8), 083505.CrossRefGoogle Scholar
  35. Madhava Rao, M. V., Su, Y. K., & Hsu, S. C. (2013). Improving the performance of phosphorescent based white polymer light emitting devices using iridium complexes. International Journal on Organic Electronic, 2(1), 19–24.CrossRefGoogle Scholar
  36. Mertens, R. (2014). The OLED handbook: A guide to OLED technology, industry & market. Herzelia: OLED-Info.Google Scholar
  37. Morris, S. A., & Boyack, K. W. (2005). Visualizing 60 years of anthrax research. Retrieved January 11, 2011, from http://www.conceptsymbols.com/web/publications/2005_final_issi_anthrax.pdf.
  38. Morris, S. A., Yen, G., Wu, Z., & Asnake, B. (2003). Time line visualization of research fronts. Journal of the American Society for Information Science and Technology, 54(5), 413–422.CrossRefGoogle Scholar
  39. Nierop, E. (2010). The introduction of the 5-year impact factor: Does it benefit statistics journals? Statistica Neerlandica, 64(1), 71–76.MathSciNetCrossRefGoogle Scholar
  40. Persson, O. (1994). The intellectual base and research fronts of JASIS 1986-1990. Journal of the American Society for Information Science, 45(1), 31–38.CrossRefGoogle Scholar
  41. Sebastian, R., Michael, T., Björn, L., & Karl, L. (2013). White organic light-emitting diodes: Status and perspective. Retrieved September 3, 2014, from http://arxiv.org/pdf/1302.3435.pdf.
  42. Segal, M., Singh, M., Rivoire, K., Difley, S., Voorhis, T. V., & Baldo, M. A. (2007). Extrafluorescent electroluminescence in organic light-emitting devices. Nature Materials, 6, 374–378.CrossRefGoogle Scholar
  43. Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28, 758–775.CrossRefGoogle Scholar
  44. Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2009). Comparative study on methods of detecting research fronts using different types of citation. Journal of the American Society for Information Science and Technology, 60(3), 571–580.CrossRefGoogle Scholar
  45. Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., & Matsushima, K. (2011). Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications. Technological Forecasting and Social Change, 78, 274–282.CrossRefGoogle Scholar
  46. Small, H. (2006). Tracking and predicting growth areas in science. Scientometrics, 68(3), 595–610.CrossRefGoogle Scholar
  47. Sombatsompop, N., Markpin, T., & Premkamolnetr, N. (2004). A modified method for calculating the impact factors of journals in ISI journal citation reports: Polymer science category in 1997–2001. Scientometrics, 60(2), 217–235.CrossRefGoogle Scholar
  48. Sun, J. W., Lee, J. H., Moon, C. K., Kim, K. H., Shin, H., & Kim, J. J. (2014). A fluorescent organic light-emitting diode with 30% external quantum efficiency. Advanced Materials, 26(32), 5684–5688.CrossRefGoogle Scholar
  49. Türker, L., Tapan, A., & Gümüş, S. (2009). Electroluminescent properties of certain polyaromatic compounds: Part 1—Characteristics of oled devices based on fluorescent polyaromatic dopants. Polycyclic Aromatic Compounds, 29(3), 123–138.CrossRefGoogle Scholar
  50. Upham, S. P., & Small, H. (2010). Emerging research fronts in science and technology: Patterns of new knowledge development. Scientometrics, 83(1), 15–38.CrossRefGoogle Scholar
  51. Van Leeuwen, T. N., & Moed, H. F. (2002). Development and application of journal impact factor measures in the Dutch science systems. Scientometrics, 53(2), 249–266.CrossRefGoogle Scholar
  52. Van Leeuwen, T. N., Moed, H. F., & Reedijk, J. (1999). Critical comments on Institute for scientific information impact factors: A sample of inorganic molecular chemistry journals. Journal of Information Science, 25(6), 489–498.CrossRefGoogle Scholar
  53. Yang, L., Morris, S. A., & Barden, E. M. (2009). Mapping institutions and their weak ties in a research specialty: A case study of cystic fibrosis body composition research. Scientometrics, 79(2), 421–434.CrossRefGoogle Scholar
  54. Zhao, D., & Strotmann, A. (2014). The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis. Journal of the Association for Information Science and Technology, 65, 995–1006.CrossRefGoogle Scholar
  55. Zink, D. M., Bergmann, L., Ambrosek, D., Wallesch, M., Volz, D., & Mydlak, M. (2014). Singlet harvesting copper-based emitters: A modular approach towards next-generation OLED technology. Retrieved September 20, 2014, from http://iopscience.iop.org/2053-1613/1/1/015003/pdf/2053-1613_1_1_015003.pdf.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Library and Information ScienceNational Taiwan UniversityTaipeiTaiwan
  2. 2.Archives Service Division, National Archives AdministrationNational Development CouncilNew Taipei CityTaiwan

Personalised recommendations