Scientometrics

, Volume 109, Issue 3, pp 2007–2030 | Cite as

Can alternative indicators overcome language biases in citation counts? A comparison of Spanish and UK research

Article

Abstract

This study compares Spanish and UK research in eight subject fields using a range of bibliometric and social media indicators. For each field, lists of Spanish and UK journal articles published in the year 2012 and their citation counts were extracted from Scopus. The software Webometric Analyst was then used to extract a range of altmetrics for these articles, including patent citations, online presentation mentions, online course syllabus mentions, Wikipedia mentions and Mendeley reader counts and Altmetric.com was used to extract Twitter mentions. Results show that Mendeley is the altmetric source with the highest coverage, with 80 % of sampled articles having one or more Mendeley readers, followed by Twitter (34 %). The coverage of the remaining sources was lower than 3 %. All of the indicators checked either have too little data or increase the overall difference between Spain and the UK and so none can be suggested as alternatives to reduce the bias against Spain in traditional citation indexes.

Keywords

Altmetrics Social media metrics Alternative indicators Country comparison Language bias Research production 

References

  1. ACUMEN Portfolio. (2014). Guidelines for good evaluation practice (2014). The ACUMEN Consortium. http://research-acumen.eu/wp-content/uploads/D6.14-Good-Evaluation-Practices.pdf. Accessed 13 December 2015.
  2. Adie, E., & Roe, W. (2013). Altmetric: Enriching scholarly content with article-level discussion and metrics. Learned Publishing, 26(1), 11–17.CrossRefGoogle Scholar
  3. Aibar, E., Lladós-Masllorens, J., Meseguer-Artola, A., Minguillón, J., & Lerga, M. (2015). Wikipedia at university: What faculty think and do about it. Electronic Library, 33(4), 668–683.CrossRefGoogle Scholar
  4. Albarillo, F. (2014). Language in social science databases: English versus non-english articles in JSTOR and Scopus. Behavioral & Social Sciences Librarian, 33(2), 77–90.CrossRefGoogle Scholar
  5. Alonso-Jiménez, E. (2015). Una aproximación a Wikipedia como polisistema cultural. Convergencia. Revista de Ciencias Sociales, 22(68), 125–149.Google Scholar
  6. Archambault, É., Vignola-Gagné, É., Côté, G., Larivière, V., & Gingrasb, Y. (2006). Benchmarking scientific output in the social sciences and humanities: The limits of existing databases. Scientometrics, 68(3), 329–342.CrossRefGoogle Scholar
  7. Bollen, J., Van-De-Sompel, H., Smith, J. A., & Luce, R. (2005). Toward alternative metrics of journal impact: A comparison of download and citation data. Information Processing and Management, 41(6), 1419–1440.CrossRefGoogle Scholar
  8. Bonk, C. J. (2001). Online teaching in an online world. Bloomington, In CourseShare.com. http://www.publicationshare.com/docs/faculty_survey_report.pdf. Accessed 22 January 2016.
  9. Bornmann, L. (2014). Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. Journal of Informetrics, 8(4), 895–903.CrossRefGoogle Scholar
  10. Breschi, S., Tarasconi, G., Catalini, C., Novella, L., Guatta, P., & Johnson, H. (2006). Highly Cited Patents, Highly Cited Publications, and Research Networks. European Commission. http://ec.europa.eu/invest-in-research/pdf/download_en/final_report_hcp.pdf Accessed 2 December 2015.
  11. Cabrera Hernández, L. M. (2013). Web 2.0: Wikipedia como fuente de información sobre las ciencias de la alimentación y de la nutrición. Alicante: Universidad de Alicante.Google Scholar
  12. Callaert, J., Van Looy, B., Verbeek, A., Debackere, K., & Thijs, B. (2006). Traces of Prior Art: An analysis of non-patent references found within patent documents. Scientometrics, 69(1), 3–20.CrossRefGoogle Scholar
  13. Chamberlain, S. (2013). Consuming article-level metrics: Observations and lessons. Information Standards Quarterly, 25(2), 4–13.CrossRefGoogle Scholar
  14. Chen, H.-L. (2010). The perspectives of higher education faculty on Wikipedia. Electronic Library, 28(3), 361–373.CrossRefGoogle Scholar
  15. Chinchilla-Rodríguez, Z., Corera-Álvarez, E., Moya-Anegón F. de, & Sanz-Menéndez, L. (2014). La producción científica española en el contexto internacional y la posición de sus instituciones de investigación en el ranking mundial (2009–2013). In M. Parellada (Dir.). Informe CYD 2014 (pp. 220–235). Barcelona: Fundación Conocimiento y Desarrollo.Google Scholar
  16. Clauson, K. A., Polen, H. H., Kamel Boulos, M. N., & Dzenowagis, J. H. (2008). Scope, completeness, and accuracy of drug information in Wikipedia. The Annals of Pharmacotherapy, 42(12), 1814–1821.CrossRefGoogle Scholar
  17. Costas, R., Zahedi, Z., & Wouters, P. (2015a). Do ‘altmetrics’ correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective. Journal of the Association for Information Science and Technology, 66(10), 2003–2019.CrossRefGoogle Scholar
  18. Costas, R., Zahedi, Z., & Wouters, P. (2015b). The thematic orientation of publications mentioned on social media: Large-scale disciplinary comparison of social media metrics with citations. Aslib Journal of Information Management, 67(3), 260–288.CrossRefGoogle Scholar
  19. Cronin, B. (2001). Bibliometrics and beyond: Some thoughts on web-based citation analysis. Journal of Information Science, 27(1), 1–7.CrossRefGoogle Scholar
  20. Cummings, J. A., Bonk, C. J., & Jacobs, F. R. (2002). Twenty-first century college syllabi: Options for online communication and interactivity. The Internet and Higher Education, 5(1), 1–19.CrossRefGoogle Scholar
  21. Davis, P. M. (2002). The effect of the web on undergraduate citation behavior: A 2000 update. College & Research Libraries, 63(1), 53–60.CrossRefGoogle Scholar
  22. de Moya-Anegón, F., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., González-Molina, A., López-Illescas, C., & Vargas-Quesada, B. (2014). Indicadores bibliométricos de la actividad científica española 2011. Informe 2013. Madrid: FECYT.Google Scholar
  23. de Moya-Anegón, F., Chinchilla-Rodríguez, Z., Vargas-Quesada, B., Corera-Álvarez, E., Muñoz-Fernández, F. J., González-Molina, A., et al. (2007). Coverage analysis of Scopus: A journal metric approach. Scientometrics, 73(1), 53–78.CrossRefGoogle Scholar
  24. Doolittle, P. E., & Siudzinski, R. A. (2010). Recommended syllabus components: what do higher education faculty include in their syllabi? Journal on Excellence in College Teaching, 21(3), 29–61.Google Scholar
  25. Eijkman, H. (2010). Academics and Wikipedia: Reframing Web 2.0+ as a disruptor of traditional academic power-knowledge arrangements. Campus-Wide Information Systems, 27(3), 173–185.CrossRefGoogle Scholar
  26. Engels, T. C. E., Ossenblok, T. L. B., & Spruyt, E. H. J. (2012). Changing publication patterns in the social sciences and humanities, 2000–2009. Scientometrics, 93(2), 373–390.CrossRefGoogle Scholar
  27. Eysenbach, G. (2011). Can tweets predict citations? Metrics of social impact based on twitter and correlation with traditional metrics of scientific impact. Journal of Medical Internet Research, 13(4), e123. doi:10.2196/jmir.2012.CrossRefGoogle Scholar
  28. Fairclough, R., & Thelwall, M. (2015a). More precise methods for national research citation impact comparisons. Journal of Informetrics, 9(4), 895–906.CrossRefGoogle Scholar
  29. Fairclough, R., & Thelwall, M. (2015b). National research impact indicators from Mendeley readers. Journal of Informetrics, 9(4), 845–859.CrossRefGoogle Scholar
  30. Fink, S. B. (2012). The many purposes of course syllabi. Which are essential and useful? Syllabus, 1(1). http://www.syllabusjournal.org/syllabus/article/view/161/PDF. Accessed 9 December 2015.
  31. Garavalia, L. S., Hummel, J. H., Wiley, L. P., & Huitt, W. G. (1999). Constructing the course syllabus: Faculty and student perceptions of important syllabus components. Journal on Excellence in College Teaching, 10(1), 5–21.Google Scholar
  32. García Fernández, E. C., & Deltell Escolar, L. (2012). La Guía Docente: un reto en el nuevo modelo de educación universitaria. Estudios sobre el mensaje periodístico, 18, 357–364.Google Scholar
  33. García Martín, A. (Coord.) (2012). Manual de elaboración de guías docentes adaptadas al EEES. Cartagena: Universidad Politécnica de Cartagena. http://www.upct.es/~euitc/documentos/manual_guias_para_web.pdf Accessed 18 December 2015.
  34. Goodrum, A. A., McCain, K. W., Lawrence, S., & Giles, C. L. (2001). Scholarly publishing in the Internet age: A citation analysis of computer science literature. Information Processing and Management, 37(5), 661–675.MATHCrossRefGoogle Scholar
  35. Graham, M., Hale, S. A., & Stephens, M. (2011). Geographies of the world’s knowledge. London: Convoco.Google Scholar
  36. Gunn, W. (2013). Social signals reflect academic impact: What it means when a scholar adds a paper to Mendeley. Information Standards Quarterly, 25(2), 33–39.CrossRefGoogle Scholar
  37. Hammarfelt, B. (2014). Using altmetrics for assessing research impact in the humanities. Scientometrics, 101(2), 1419–1430.CrossRefGoogle Scholar
  38. Haustein, S., Costas, R., & Larivière, V. (2015). Characterizing Social media metrics of scholarly papers: The effect of document properties and collaboration patterns. PLoS One, 10(3), e0127830. doi:10.1371/journal.pone.0120495.CrossRefGoogle Scholar
  39. Haustein, S., Peters, I., Sugimoto, C. R., Thelwall, M., & Larivière, V. (2014). Tweeting biomedicine: An analysis of tweets and citations in the biomedical literature. Journal of the American Society for Information Science and Technology, 65(4), 656–669.CrossRefGoogle Scholar
  40. Head, A. J., & Eisenberg, M. B. (2010). How today’s college students use Wikipedia for course-related research. First Monday. doi:10.5210/fm.v15i3.2830.Google Scholar
  41. Henning, V., & Reichelt, J. (2008). Mendeley—A Last.fm for research? In eScience, 2008: IEEE Fourth International Conference on eScience (pp. 327–328). Indiana, USA. doi:10.1109/eScience.2008.128.
  42. Herbert, V. G., Frings, A., Rehatschek, H., Richard, G., & Leithner, A. (2015). Wikipedia—challenges and new horizons in enhancing medical education. BMC Medical Education. doi:10.1186/s12909-015-0309-2.Google Scholar
  43. Hertz, B., Van Woerkum, C., & Kerkhof, P. (2015). Why do scholars use powerpoint the way they do? Business and Professional Communication Quarterly, 78(3), 273–291.CrossRefGoogle Scholar
  44. Holmberg, K. (2015). Altmetrics for information professionals—Past, present and future. Waltham, MA: Elsevier.Google Scholar
  45. Holmberg, K., & Thelwall, M. (2014). Disciplinary differences in Twitter scholarly communication. Scientometrics, 101(2), 1027–1042.CrossRefGoogle Scholar
  46. Jamali, H. R., Nicholas, D., & Herman, E. (2016). Scholarly reputation in the digital age and the role of emerging platforms and mechanisms. Research Evaluation, 25(1), 37–49.CrossRefGoogle Scholar
  47. Jaramillo, P., Castañeda, P., & Pimienta, M. (2009). Qué hacer con la tecnología en el aula: inventario de usos de las TIC para aprender y enseñar. Educación y Educadores, 12(2), 159–179.Google Scholar
  48. Java, A., Song, X., Finin, T., & Tseng, B. (2007). Why we twitter: Understanding microblogging usage and communities. In Proceedings of the 9th WEBKDD and 1st SNA-KDD Workshop 2007 (pp. 56–65). California, USA.Google Scholar
  49. Jeng, W., He, D., & Jiang, J. (2015). User participation in an academic social networking service: A survey of open group users on Mendeley. Journal of the Association for Information Science and Technology, 66(5), 890–904.CrossRefGoogle Scholar
  50. Koppen, L., Phillips, J., & Papageorgiou, R. (2015). Analysis of reference sources used in drug-related Wikipedia articles. Journal of the Medical Library Association: JMLA, 103(3), 140–144.CrossRefGoogle Scholar
  51. Kousha, K., & Thelwall, M. (2006). Motivations for URL citations to open access library and information science articles. Scientometrics, 68(3), 501–517.CrossRefGoogle Scholar
  52. Kousha, K., & Thelwall, M. (2007). How is science cited on the web? A classification of Google unique web citations. Journal of the Association for Information Science and Technology, 58(11), 1631–1644.CrossRefGoogle Scholar
  53. Kousha, K., & Thelwall, M. (2008). Assessing the impact of disciplinary research on teaching: An automatic analysis of online syllabuses. Journal of the American Society for Information Science and Technology, 59(13), 2060–2069.CrossRefGoogle Scholar
  54. Kousha, K., & Thelwall, M. (2015a). An automatic method for assessing the teaching impact of books from online academic syllabi. Journal of the Association for Information Science and Technology. doi:10.1002/asi.23542.Google Scholar
  55. Kousha, K., & Thelwall, M. (2015b). Patent citation analysis with Google. Journal of the Association for Information Science and Technology. doi:10.1002/asi.23608.Google Scholar
  56. Kousha, K., & Thelwall, M. (2015c). Web indicators for research evaluation. Part 3: Books and non-standard outputs. El profesional de la información, 24(6), 724–736.CrossRefGoogle Scholar
  57. Kousha, K., & Thelwall, M. (2016). Are Wikipedia citations important evidence of the impact of scholarly articles and books? Journal of the Association for Information Science and Technology. doi:10.1002/asi.23694.Google Scholar
  58. Kubiszewski, I., Noordewier, T., & Costanza, R. (2011). Perceived credibility of Internet encyclopedias. Computers & Education, 56(3), 659–667.CrossRefGoogle Scholar
  59. Lavsa, S. M., Corman, S. L., Culley, C. M., & Pummer, T. L. (2011). Reliability of Wikipedia as a medication information source for pharmacy students. Currents in Pharmacy Teaching and Learning, 3(2), 154–158.CrossRefGoogle Scholar
  60. Letierce, J., Passant, A., Breslin, J., & Decker, S. (2010). Understanding how Twitter is used to spread scientific messages. In Proceedings of the WebSci10: Extending the Frontiers of Society On-Line. Raleigh (NC), 26–27 April. http://journal.webscience.org/314/2/websci10_submission_79.pdf.
  61. Leydesdorff, L., de Moya-Anegón, F., & Guerrero-Bote, V. P. (2010). Journal maps on the basis of Scopus data: A comparison with the Journal Citation Reports of the ISI. Journal of the American Society for Information Science and Technology, 61(2), 352–369.Google Scholar
  62. Leydesdorff, L., Wagner, C. S., Park, H.-W., & Adams, J. (2013). International collaboration in science: The global map and the network. El profesional de la información, 22(1), 87–94.CrossRefGoogle Scholar
  63. Li, X., Thelwall, M., & Giustini, D. (2012). Validating online reference managers for scholarly impact measurement. Scientometrics, 91(2), 461–471.CrossRefGoogle Scholar
  64. Lo, S. S. (2010). Scientific linkage of science research and technology development: A case of genetic engineering research. Scientometrics, 82(1), 109–120.CrossRefGoogle Scholar
  65. López-Navarro, I., Moreno, A. I., Quintanilla, M. A., & Rey-Rocha, J. (2015). Why do I publish research articles in English instead of my own language? Differences in Spanish researchers’ motivations across scientific domain. Scientometrics, 103(3), 939–976.CrossRefGoogle Scholar
  66. Luyt, B., & Tan, D. (2010). Improving Wikipedia’s credibility: References and citations in a sample of history articles. Journal of the American Society for Information Science and Technology, 61(4), 715–722.Google Scholar
  67. Marta-Lazo, C., Grandío Pérez, M. M., & Gabelas Barroso, J. A. (2014). La educación mediática en las titulaciones de Educación y Comunicación de las universidades españolas. Análisis de los recursos recomendados en las guías docentes. Vivat Academia, 126, 63–78.CrossRefGoogle Scholar
  68. Mas-Bleda, A., & Aguillo, I. F. (2015). La web social como nuevo medio de comunicación y evaluación científica. Barcelona: UOC.Google Scholar
  69. Matejka, K., & Kurke, L. B. (1994). Designing a great syllabus. College Teaching, 42(3), 115–117.CrossRefGoogle Scholar
  70. Meyer, M. (2000). What is special about patent citations? Differences between scientific and patent citations. Scientometrics, 49(1), 93–123.CrossRefGoogle Scholar
  71. Meyer, M. (2003). Academic patents as an indicator of useful research? A new approach to measure academic inventiveness. Research Evaluation, 12(1), 17–27.CrossRefGoogle Scholar
  72. Michel, J., & Bettels, B. (2001). Patent citation analysis. A closer look at the basic input data from patent search reports. Scientometrics, 51(1), 185–201.CrossRefGoogle Scholar
  73. Moed, H. F., & Halevi, G. (2015). Multidimensional assessment of scholarly research impact. Journal of the Association for Information Science and Technology, 66(10), 1988–2002.CrossRefGoogle Scholar
  74. Moed, H. F., & Visser, M. S. (2007). Developing Bibliometric indicators of research performance in computer science: An exploratory study’. Research report. Leiden: Leiden University, Centre for Science and Technology Studies (CWTS).Google Scholar
  75. Moed H. F., & Visser, M. S. (2008). Appraisal of citation data sources. A report to HEFCE by the Centre for Science and Technology Studies. Leiden: Leiden University. http://www.hefce.ac.uk/media/hefce/content/pubs/indirreports/2008/missing/Appraisal%20of%20Citation%20Data%20Sources.pdf. Accessed 21 December 2015.
  76. Mohammadi, E., & Thelwall, M. (2014). Mendeley readership altmetrics for the social sciences and humanities: Research evaluation and knowledge flows. Journal of the American Society for Information Science and Technology, 65(8), 1627–1638.CrossRefGoogle Scholar
  77. Mohammadi, E., Thelwall, M., Haustein, S., & Larivière, V. (2015). Who reads research articles? An altmetrics analysis of Mendeley user categories. Journal of the Association for Information Science and Technology, 66(9), 1832–1846.CrossRefGoogle Scholar
  78. Mohammadi, E., Thelwall, M., & Kousha, K. (2016). Can Mendeley bookmarks reflect readership? A survey of user motivations. Journal of the Association for Information Science and Technology, 67(5), 1198–1209.CrossRefGoogle Scholar
  79. Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between U. S. technology and public science. Research Policy, 26(3), 317–330.CrossRefGoogle Scholar
  80. Nederhof, A. J. (2006). Bibliometric monitoring of research performance in the social sciences and the humanities: A review. Scientometrics, 66(1), 81–100.MathSciNetCrossRefGoogle Scholar
  81. Orduña-Malea, E., Ayllón, J. M., Martín-Martín, A., & Delgado López-Cózar, E. (2014). About the size of Google Scholar: playing the numbers. Granada: EC3 Working Papers, 18: 23. http://arxiv.org/pdf/1407.6239. Accessed 4 February 2016.
  82. Ortega, J. L. (2015). Relationship between altmetric and bibliometric indicators across academic social sites: The case of CSIC’s members. Journal of Informetrics, 9(1), 39–49.CrossRefGoogle Scholar
  83. Pfeil, U., Zaphiris, P., & Ang, C. S. (2006). Cultural differences in collaborative authoring of Wikipedia. Journal of Computer-Mediated Communication, 12(1), 88–113.CrossRefGoogle Scholar
  84. Plaza, L. M., & Bordons, M. (2006). Proyección internacional de la ciencia española. Enciclopedia del español en el mundo, Anuario del Instituto Cervantes 2006–2007 (pp. 547–567). Madrid: Instituto Cervantes.Google Scholar
  85. Priem, J., & Costello, K. L. (2010). How and why scholars cite on Twitter. Proceedings of the American Society for Information Science and Technology, 47(1), 1–4.CrossRefGoogle Scholar
  86. Priem, J., & Hemminger, B. M. (2010). Scientometrics 2.0: Toward new metrics of scholarly impact on the social Web. First Monday. doi:10.5210/fm.v15i7.2874.Google Scholar
  87. Priem, J., Taraborelli, D., Groth, P., & Neylon, C. (2010). Altmetrics: A manifesto. http://altmetrics.org/manifesto. Accessed 27 November 2015.
  88. Rector, L. H. (2008). Comparison of Wikipedia and other encyclopedias for accuracy, breadth, and depth in historical articles. Reference Services Review, 36(1), 7–22.CrossRefGoogle Scholar
  89. Robinson-García, N., Torres-Salinas, D., Zahedi, Z., & Costas, R. (2014). New data, new possibilities: Exploring the insides of Altmetric.com. El Profesional de la Informacion, 23(4), 359–366.CrossRefGoogle Scholar
  90. Rousseau, R., & Ye, F. Y. (2013). A multi-metric approach for research evaluation. Chinese Science Bulletin, 58(26), 3288–3290.CrossRefGoogle Scholar
  91. Schmoch, U. (1993). Tracing the knowledge transfer from science to technology as reflected in patent indicators. Scientometrics, 26(1), 193–211.CrossRefGoogle Scholar
  92. Shema, H., Bar-Ilan, J., & Thelwall, M. (2012). Research blogs and the discussion of scholarly information. PLoS One, 7(5), e35869.CrossRefGoogle Scholar
  93. Shim, J. P., & Yang, J. (2009). Why is Wikipedia not more widely accepted in Korea and China? Factors affecting knowledge-sharing adoption. Decision Line, 40(2), 12–15.Google Scholar
  94. Shuai, X., Pepe, A., & Bollen, J. (2012). How the scientific community reacts to newly submitted preprints: Article downloads, twitter mentions and citations. PLoS One, 7(11), e47523.CrossRefGoogle Scholar
  95. Stuart, D. (2009). Social media metrics. Online, 33(6). http://www.infotoday.com/online/nov09/Stuart.shtml. Accessed 7 February 2016.
  96. Thelwall, M. (2009). Introduction to webometrics: Quantitative web research for the social sciences. San Rafael, CA: Morgan & Claypool.Google Scholar
  97. Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other social web services. PLoS One, 8(5), e64841.CrossRefGoogle Scholar
  98. Thelwall, M., & Kousha, K. (2008). Online presentations as a source of scientific impact? An analysis of PowerPoint files citing academic journals. Journal of the American Society for Information Science and Technology, 59(5), 805–815.CrossRefGoogle Scholar
  99. Thelwall, M., & Kousha, K. (2015a). Web indicators for research evaluation. Part 1: Citations and links to academic articles from the Web. El profesional de la información, 24(5), 587–606.CrossRefGoogle Scholar
  100. Thelwall, M., & Kousha, K. (2015b). Web indicators for research evaluation. Part 2: Social media metrics. El profesional de la información, 24(5), 607–620.CrossRefGoogle Scholar
  101. Thelwall, M., & Maflahi, N. (2015). Are scholarly articles disproportionately read in their own country? An analysis of Mendeley readers. Journal of the Association for Information Science and Technology, 66(6), 1124–1135.CrossRefGoogle Scholar
  102. Thelwall, M., & Sud, P. (2012). Webometric research with the Bing Search API 2.0. Journal of Informetrics, 6(1), 44–52.CrossRefGoogle Scholar
  103. Thelwall, M., & Sud, P. (2015). Mendeley readership counts: An investigation of temporal and disciplinary differences. Journal of the Association for Information Science and Technology. doi:10.1002/asi.23559.Google Scholar
  104. Thelwall, M., & Wilson, P. (2016). Mendeley readership altmetrics for medical articles: An analysis of 45 fields. Journal of the Association for Information Science and Technology, 67(8), 1962–1972.CrossRefGoogle Scholar
  105. Tijssen, R., Buter, R., & Van Leeuwen, T. (2000). Technological relevance of science: An assessment of citation linkages between patents and research papers. Scientometrics, 47(2), 389–412.CrossRefGoogle Scholar
  106. Tsou, A., Bowman, T., Ghazinejad, A., & Sugimoto, C. (2015). Who tweets about science? Proceedings of the 15th ISSI Conference (pp. 95–100). Istanbul: Boğaziçi University.Google Scholar
  107. Tung, Y.-T. (2010). A Case Study of Undergraduate Course Syllabi in Taiwan. University of North Texas. http://digital.library.unt.edu/ark:/67531/metadc28487/m2/1/high_res_d/dissertation.pdf. Accessed 17 December 2015.
  108. Uz, C., Orhan, F., & Bilgiç, G. (2010). Prospective teachers’ opinions on the value of PowerPoint presentations in lecturing. Procedia—Social and Behavioral Sciences, 2(2), 2051–2059.CrossRefGoogle Scholar
  109. Van den Bosch, A., Bogers, T., & de Kunder, M. (2016). Estimating search engine index size variability: A 9-year longitudinal study. Scientometrics, 107(2), 839–856.CrossRefGoogle Scholar
  110. Van Leeuwen, T. N., Moed, H. F., Tijssen, R. J. W., Visser, M. S., & Van Raan, A. F. J. (2001). Language biases in the coverage of the Science Citation Index and its consequences for international comparisons of national research performance. Scientometrics, 51(1), 335–346.CrossRefGoogle Scholar
  111. Vaughan, L., & Shaw, D. (2003). Bibliographic and web citations: What is the difference?. Journal of the American Society for Information Science and Technology, 54(14), 1313–1322.CrossRefGoogle Scholar
  112. Vaughan, L., & Shaw, D. (2004). Can web citations be a measure of impact? An investigation of journals in the life sciences. Proceedings of the American Society for Information Science and Technology, 41(1), 516–526.CrossRefGoogle Scholar
  113. Vaughan, L., & Shaw, D. (2005). Web citation data for impact assessment: A comparison of four science disciplines. Journal of the American Society for Information Science and Technology, 56(10), 1075–1087.CrossRefGoogle Scholar
  114. Vaughan, L., & Thelwall, M. (2004). Search engine coverage bias: Evidence and possible causes. Information Processing and Management, 40(4), 693–707.CrossRefGoogle Scholar
  115. Veletsianos, G. (2012). Higher education scholars’ participation and practices on Twitter. Journal of Computer Assisted learning, 28(4), 336–349.CrossRefGoogle Scholar
  116. Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., & Deleus, F. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54(3), 399–420.CrossRefGoogle Scholar
  117. Wang, J. (2013). Citation time window choice for research impact evaluation. Scientometrics, 94(3), 851–872.CrossRefGoogle Scholar
  118. Web-based Education Commission (2000). The Power of the Internet for Learning: Moving from Promise to Practice. Washington: U.S. Department of Education. https://www2.ed.gov/offices/AC/WBEC/FinalReport/WBECReport.pdf. Accessed 28 December 2015.
  119. Weller, K., Dornstädter, R., Freimanis, R., Klein, R. N., & Perez, M. (2010). Social Software in Academia: Three Studies on Users’ Acceptance of Web 2.0 Services. In Proceedings of the 2nd Web Science Conference (WebSci10): Extending the Frontiers of Society On-Line. April 26-27th, Raleigh, North Caroline, United States.Google Scholar
  120. Weller, K., Dröge, E. & Puschmann, C. (2011). Citation Analysis in Twitter: Approaches for Defining and Measuring Information Flows within Tweets during Scientific Conferences. In Proceedings of the ESWC2011 Workshop on Making Sense of Microposts (pp. 1–12). Heraklion, Greece.Google Scholar
  121. Welsh, T. (2000). An Evaluation of Online Syllabi in The University of Tennessee College of Communications. ALN Magazine, 4(2). Accessed 28 December 2015, https://www.researchgate.net/profile/Teresa_Welsh.
  122. Wouters, P., Thelwall, M., Kousha, K., Waltman, L., de Rijcke, S., Rushforth, A., et al. (2015). The metric tide: literature review (supplementary report i to the independent review of the role of metrics in research assessment and management). HEFCE. doi:10.13140/RG.2.1.5066.3520.Google Scholar
  123. Zahedi, Z., Costas, R., & Wouters, P. (2014). Assessing the Impact of Publications Saved by Mendeley Users: Is There Any Different Pattern Among Users? In Proceedings of the 35th IATUL Conferences (Paper 4). Espoo, Finland. http://docs.lib.purdue.edu/iatul/2014/altmetrics/4.
  124. Zaugg, H., West, R. E., Tateishi, I., & Randall, D. L. (2011). Mendeley: Creating communities of scholarly inquiry through research collaboration. TechTrends, 55(1), 32–36.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Statistical Cybermetrics Research Group, School of Mathematics and Computer ScienceUniversity of WolverhamptonWolverhamptonUK

Personalised recommendations