Advertisement

Scientometrics

, Volume 110, Issue 1, pp 417–442 | Cite as

Creating impact in the digital space: digital practice dependency in communities of digital scientific innovations

  • Sabine Brunswicker
  • Sorin Adam Matei
  • Michael Zentner
  • Lynn Zentner
  • Gerhard Klimeck
Article

Abstract

Modern science has become collaborative and digital. The Internet has supported the emergence of scientific digital platforms that globally connect programmers and users of novel digital scientific products such as scientific interactive software tools. These digital scientific innovations complement traditional text-based products like journal publications. This article is focused on the scientific impact of a platform’s programming community that produces these digital scientific innovations. The article’s main theoretical argument is that beyond an individual’s contribution efforts to these innovations, a new social structure affects his scientific recognition through citations of his tools in text-based publications. Taking a practice theory lens, we introduce the concept of a digital practice structure that emerges from the digital innovation work practice, performed by programmers who jointly work on a tool. This digital practice creates dependence forces among the community members in an analogy to Newton’s gravity concept. Our model represents such dependencies in a spatial autocorrelative model. We empirically estimate this model using data of the programming community of nanoHUB in which 477 nanotechnology tool programmers have contributed more than 715 million lines of code. Our results show that a programmer’s contributions to digital innovations may have positive effects, while the digital practice structure creates negative dependency effects. Colloquially speaking, being surrounded by star performers can be harmful. Our findings suggest that modeling scientific impact needs to account for a scientist’s contribution to programming communities that produce digital scientific innovations and the digital work structures in which these contributions are embedded.

Keywords

Digital scientific innovation Scientific collaboration Social structure Programmer communities Network autocorrelation Social distance 

Mathematics Subject Classification

91B72 91D30 

JEL Classification

C11 C20 O30 

Notes

Acknowledgments

This work was initiated under the auspices of the Exploratory Research in Social Science Grant of the Executive Office of the Vice President for Research (OVPR) at Purdue University (PI Sorin Adam Matei and Gerhard Klimeck) and was supported by the NSF award 1255781. We thank Philip Munyua, Kang-Yu Hsu, Srikant Rao, Steven Clark, and Swaroop Samek at Purdue University for their support in data processing and analysis.

Supplementary material

11192_2016_2106_MOESM1_ESM.docx (13.9 mb)
Supplementary material 1 (DOCX 14209 kb)

References

  1. Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412.CrossRefGoogle Scholar
  2. Adler, B. T., & de Alfaro, L. (2007). A content-driven reputation system for the Wikipedia. In Proceedings of the 16th international conference on World Wide Web. Banff, Alberta, Canada: ACM, pp. 261–270.Google Scholar
  3. Adler, B. T., de Alfaro, L., Pye, I., & Raman, V. (2008). Measuring author’s contribution to Wikipedia. In Proceedings of the 2008 international symposium on Wikis, 2008. Porto, Portugal, 8–10 Sept 2008.Google Scholar
  4. Akerlof, G. A. (1997). Social distance and social decisions. Econometrica, 65(5), 1005–1027.MathSciNetCrossRefGoogle Scholar
  5. Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic Publishers.CrossRefMATHGoogle Scholar
  6. Anselin, L. (2002). Under the hood issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27(3), 247–267.CrossRefGoogle Scholar
  7. Arazy, O., Stroulia, E., Ruecker, S., Arias, C., Fiorentino, C., Ganev, V., et al. (2010). Recognizing contributions in Wikis: Authorship categories, algorithms, and visualizations. Journal of the American Society for Information Science and Technology, 61(6), 1166–1179.Google Scholar
  8. Bateman, P. J., Gray, P. H., & Butler, B. S. (2011). Research note-the impact of community commitment on participation in online communities. Information Systems Research, 22(4), 841–854.CrossRefGoogle Scholar
  9. Bivand, R. (2015). Package ‘Spdep’: Spatial dependence: Weighting schemes, statistics and models. Repository CRAN.Google Scholar
  10. Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.MathSciNetCrossRefGoogle Scholar
  11. Borgatti, S. P., & Everett, M. G. (2000). Models of core/periphery structures. Social Networks, 21(4), 375–395.CrossRefGoogle Scholar
  12. Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323, 892–895.CrossRefGoogle Scholar
  13. Burt, R. (1992). Structural holes: The social structure of competition. Cambridge, MA: Harvard University Press.Google Scholar
  14. Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology, 94, S95–S120.CrossRefGoogle Scholar
  15. Contractor, N. S., & DeChurch, L. A. (2014). Integrating social networks and human social motives to achieve social influence at scale. Proceedings of National Academy of Science USA, 111(Suppl 4), 13650–13657.CrossRefGoogle Scholar
  16. Cook, K. S., & Whitmeyer, J. M. (1992). Two approaches to social structure: Exchange theory and network analysis. Annual Review of Sociology, 18, 109–127.CrossRefGoogle Scholar
  17. Crowston, K., Wei, K., Howison, J., & Wiggins, A. (2012). Free/libre open-source software development: What we know and what we do not know. ACM Computing Surveys (CSUR), 44(2), 7.CrossRefGoogle Scholar
  18. Crowston, K., Wei, K., Li, Q., & Howison, J. (2006). Core and periphery in free/libre and open source software team communications. In 39th Hawai’i International Conference on System System (HICSS), Hawaii: IEEE, pp. 118a–118a.Google Scholar
  19. Dahlander, L., & O’Mahony, S. (2011). Progressing to the center: Coordinating project work. Organization Science, 22(4), 961–979.CrossRefGoogle Scholar
  20. Dall’Asta, L., Marsili, M., & Pin, P. (2012). Collaboration in social networks. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4395–4400.CrossRefGoogle Scholar
  21. Faraj, S., & Johnson, S. L. (2011). Network exchange patterns in online communities. Organization Science, 22(6), 1464–1480.CrossRefGoogle Scholar
  22. Feldman, M. S., & Orlikowski, W. J. (2011). Theorizing practice and practicing theory. Organization Science, 22(5), 1240–1253.CrossRefGoogle Scholar
  23. Fleming, L., & Waguespack, D. M. (2007). Brokerage, boundary spanning, and leadership in open innovation communities. Organization Science, 18(2), 165–180.CrossRefGoogle Scholar
  24. Franzoni, C., & Sauermann, H. (2014). Crowd science: The organization of scientific research in open collaborative projects. Research Policy, 43(1), 1–20.CrossRefGoogle Scholar
  25. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.CrossRefGoogle Scholar
  26. Fujimoto, K., Chou, C. P., & Valente, T. W. (2011). The network autocorrelation model using two-mode data: Affiliation exposure and potential bias in the autocorrelation parameter. Soc Networks, 33, 231–243.CrossRefGoogle Scholar
  27. García Muñiz, A. S., & Ramos Carvajal, C. (2006). Core/periphery structure models: An alternative methodological proposal. Social Networks, 28(4), 442–448.CrossRefGoogle Scholar
  28. Gargiulo, M., & Benassi, M. (2000). Trapped in your own net? Network cohesion, structural holes, and the adaptations of social capital. Organization Science, 11(2), 183–196.CrossRefGoogle Scholar
  29. Gawer, A. (2014). Bridging differing perspectives on technological platforms: Toward an integrative framework. Research Policy, 43(7), 1239–1249.CrossRefGoogle Scholar
  30. Giddens, A. (1984). The constitution of society. Cambridge: Polity Press.Google Scholar
  31. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826.MathSciNetCrossRefMATHGoogle Scholar
  32. Haefliger, S., von Krogh, G., & Spaeth, S. (2008). Code reuse in open source software. Management Science, 54(1), 180–193.CrossRefGoogle Scholar
  33. Isard, W. (1954). Location theory and trade theory: Short-run analysis. The Quarterly Journal of Economics, 68(2), 305–320.CrossRefGoogle Scholar
  34. Kane, G. J., Alavi, M., Labianca, G. J., & Borgatti, S. P. (2014). What is different about social media networks? A framework and a research agenda. MIS Quarterly, 38(1), 274–304.Google Scholar
  35. Klimeck, G., McLennan, M., Brophy, S. B., Adams III, G. B., & Lundstrom, M. S. (2008). Nanohub.Org: Advancing education and research in nanotechnology. Computing in Science & Engineering (IEEE Computer Society), 10(5), 17–23.CrossRefGoogle Scholar
  36. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., et al. (2009). Life in the network: The coming age of computational social science. Science (New York, N.Y.), 323(5915), 721–723.CrossRefGoogle Scholar
  37. Leenders, R. T. A. J. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24(1), 21–47.CrossRefGoogle Scholar
  38. LeSage, J. P. (2000). Bayesian estimation of limited dependent variable spatial autoregressive models. Geographical Analysis, 32(1), 19–35.CrossRefGoogle Scholar
  39. LeSage, J. P., & Pace, R. K. (2011). Pitfalls in higher order model extensions of basic spatial regression methodology. In T. S. U.-S. Marco (Ed.) Working paper, San Marco.Google Scholar
  40. LeSage, J. P., & Page, R. K. (2009). Introduction into spatial economics. Boca Raton: Taylor Francis/CRC Press.CrossRefGoogle Scholar
  41. Li, E. Y., Liao, C. H., & Yen, H. R. (2013). Co-authorship networks and research impact: A social capital perspective. Research Policy, 42(9), 1515–1530.CrossRefGoogle Scholar
  42. Lin, N., Cook, K., & Burt, R. (2001). Social capital: Theory and practice. The Netherlands: Aldine Transaction.CrossRefGoogle Scholar
  43. Long, J. S., & Freese, J. (2006). Regression models for categorical dependent variables using stata (2nd edn.). Stata press: College Station, TX.MATHGoogle Scholar
  44. Lu, H., & Feng, Y. (2009). A measure of authors’ centrality in co-authorship networks based on the distribution of collaborative relationships. Scientometrics, 81(2), 499–511.CrossRefGoogle Scholar
  45. Madhavan, K., Zentner, M., & Klimeck, G. (2013). Learning and research in the cloud. Nature Nanotechnology, 8(11), 786–789.CrossRefGoogle Scholar
  46. Marsaglia, G., Tsang, W. W., & Wang, J. (2003). Evaluating Kolmogorov’s distribution. Journal of Statistical Software, 8(18), 1–4.CrossRefGoogle Scholar
  47. Matei, S., & Bertino, E. (2014). A research agenda for the study of entropic social structural evolution, functional roles, adhocratic leadership styles, and credibility in online organizations and knowledge markets. In S. Matei & E. Bertino (Eds.), Roles, trust, and reputation in social media knowledge markets: theories and methods. Berlin: Springer.Google Scholar
  48. Matei, S. A., & Bruno, R. J. (2015). Pareto’s 80/20 law and social differentiation: A social entropy perspective. Public Relations Review, 41(2), 178–186.CrossRefGoogle Scholar
  49. Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source software development: Apache and mozilla. ACM Transactions on Software Engineering and Methodology, 11(3), 309–346.CrossRefGoogle Scholar
  50. Olson, G. M., Zimmerman, A., & Bos, N. (2008). Scientific collaboration on the Internet. Cambridge: MIT Press.CrossRefGoogle Scholar
  51. Orlikowski, W. J. (2000). Using technology and constituting structures: A practice lens for studying technology in organizations. Organization Science, 11(4), 404–428.CrossRefGoogle Scholar
  52. Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419–422.MathSciNetCrossRefMATHGoogle Scholar
  53. Ostrom, E. (2010). Beyond markets and states: Polycentric governance of complex economic systems. The American Economic Review, 100(3), 641–672.CrossRefGoogle Scholar
  54. Páez, A., Scott, D. M., & Volz, E. (2008). Weight matrices for social influence analysis: An investigation of measurement errors and their effect on model identification and estimation quality. Social Networks, 30(4), 309–317.CrossRefGoogle Scholar
  55. Poore, B. S., & Goodchild, M. (2011). Users as essential contributors to spatial cyberinfrastructures. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5510–5515.CrossRefGoogle Scholar
  56. Rullani, F., & Haefliger, S. (2013). The periphery on stage: the intra-organizational dynamics in online communities of creation. Research Policy, 42(4), 941–953.CrossRefGoogle Scholar
  57. Sauermann, H., & Franzoni, C. (2015). Crowd science user contribution patterns and their implications. Proceedings of National Academy of Science USA, 112(3), 679–684.CrossRefGoogle Scholar
  58. Setia, P., Rajagopalan, B., Sambamurthy, V., & Calantone, R. (2012). How peripheral developers contribute to open-source software development. Information Systems Research, 23(1), 144–163.CrossRefGoogle Scholar
  59. Tilson, D., Lyytinen, K., & Sørensen, C. (2010). Research commentary—Digital infrastructures: The missing is research agenda. Information Systems Research, 21(4), 748–759.CrossRefGoogle Scholar
  60. Wareham, J., Fox, P. B., & Cano Giner, J. L. (2014). Technology ecosystem governance. Organization Science, 25(4), 1195–1215.CrossRefGoogle Scholar
  61. Wilhelm, S., & de Matos, M. G. (2013). Estimating spatial probit models in R. The R Journal, 5(1), 130–140.Google Scholar
  62. Wright, D. J., & Wang, S. (2011). The emergence of spatial cyberinfrastructure. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5488–5491.CrossRefGoogle Scholar
  63. Yoo, Y., Boland, R. J., Jr., Lyytinen, K., & Majchrzak, A. (2012). Organizing for innovation in the digitized world. Organization Science, 23(5), 1398–1408.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Sabine Brunswicker
    • 1
  • Sorin Adam Matei
    • 2
  • Michael Zentner
    • 3
  • Lynn Zentner
    • 4
  • Gerhard Klimeck
    • 4
  1. 1.Research Center for Open Digital Innovation (RCODI), Discovery ParkPurdue UniversityWest LafayetteUSA
  2. 2.Brian Lamb School of CommunicationPurdue UniversityWest LafayetteUSA
  3. 3.ITaP/RCACPurdue UniversityWest LafayetteUSA
  4. 4.Network for Computational Nanotechnology (NCN)Purdue UniversityWest LafayetteUSA

Personalised recommendations