Advertisement

Scientometrics

, Volume 108, Issue 2, pp 633–652 | Cite as

Competitive project funding and dynamic complex networks: evidence from Projects of National Interest (PRIN)

  • Antonio ZinilliEmail author
Article

Abstract

This paper aims to study the collaboration among researchers in a specific Italian program funding, the Projects of National Interest (PRIN), which supports the academic research. The paper uses two approaches to study the dynamic complex networks: first it identifies the observed distribution of links among researchers in the four areas of interest (chemistry, physics, economics and sociology) through distribution models, then it uses a stochastic model to understand how the links change over time. The analysis is based on large and unique dataset on 4322 researchers from 98 universities and research institutes that have been selected for PRIN allocation from 2000 to 2011. The originality of this work is that we have studied a competitive funding schemes through dynamic network analysis techniques.

Keywords

Competitive project funding Dynamic complex systems Power-law distribution Preferential attachment Stochastic actor oriented model 

Notes

Acknowledgments

This work has benefitted from helpful comments and suggestions by Emanuela Reale. I would also like to thank Thomas Scherngell and Michael Barber for their advice during my visiting in Vienna granted by the Eu-SPRI PhD Circulation Award.

References

  1. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Anand, B., & Khanna, T. (2000). Do firms learn to create value? The case of alliances. Strategic Management Journal, 21, 295–315.CrossRefGoogle Scholar
  3. Andersson, K. A. (2011). The formation of collaboration networks among individuals with heterogeneous skills. Working Papers. IDEAS: https://ideas.repec.org/p/cmu/gsiawp/938084531.html#biblio.
  4. Andersson, A., & Persson, O. (1993). Networking scientists. The Annals of Regional Science, 27(1), 11–21.CrossRefGoogle Scholar
  5. Arenas, A., Danon, L., Díaz-Guilera, A., Gleiser, P., & Guimerá, R. (2004). Community analysis in social networks. European Physical Journal B, 38(2), 373.CrossRefzbMATHGoogle Scholar
  6. Barabàsi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Beaver, D. D. (2001). Reflections on scientific collaboration (and its study): Past, present, and future. Scientometrics, 52, 365–377.CrossRefGoogle Scholar
  8. Bellotti, E. (2012). Getting funded. Multi-level network of physicists in Italy. Social Networks, 34, 215–229.CrossRefGoogle Scholar
  9. Bollen, J., Rodriguez, M. A., & de Sompel, H. V. (2006). Journal status. Scientometrics, 69(3), 669–687.CrossRefGoogle Scholar
  10. Bornmann, L., & Marx, W. (2011). The h index as a research performance indicator. European Science Editing, 37(3), 77–80.Google Scholar
  11. Boschma, R. (2005). Proximity and innovation: A critical assessment. Regional Studies, 39(1), 61–74.CrossRefGoogle Scholar
  12. Boschma, R. A., & Frenken, K. (2009). The spatial evolution of innovation networks. A proximity perspective. In R. A. Boschma & R. Martin (Eds.), Handbook of evolutionary economic geography. Cheltenham: Edward Elgar.Google Scholar
  13. Chatterjee, A., Yarlagadda, S., & Chakrabarti, B. (2005). Econophysics of wealth distributions. Milan: Springer.CrossRefGoogle Scholar
  14. Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data. SIAM Review, 51, 661–703.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Davis, P. M. (2008). Eigenfactor: Does the principle of repeated improvement result in better estimates than raw citation counts? Journal of the American Society for Information Science and Technology, 59(13), 2186–2188.CrossRefGoogle Scholar
  16. De Stefano, D., Fuccella, V., Prosperina, V. M., & Zaccarin, S. (2013). The use of different data sources in the analysis of co-authorship networks and scientific performance. Social Networks, 35(3), 370–381.CrossRefGoogle Scholar
  17. Durfee, E. H., Lesser, V. R., & Corkill, D. D. (1989). Cooperative distributed problem solving. In A. Barr, P. R. Cohen, & E. A. Feigenbaum (Eds.), The handbook of artificial intelligence IV (pp. 83–127). Reading, Massachusetts: Addison-Wesley.Google Scholar
  18. Fernández, D. A., & López, J. M. V. (2015). Towards a European supranational policy of education based on the European dimension on education. Bordón. Revista de Pedagogía, 67(1), 101–116. doi: 10.13042/Bordon.2015.67107.Google Scholar
  19. Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.Google Scholar
  20. Gillespie, C. S. (2015). Fitting heavy tailed distributions: The poweRlaw package. Journal of Statistical Software, 64(2), 1–16. http://www.jstatsoft.org/v64/i02/.
  21. Giot, L., et al. (2003). A protein interaction map of Drosophila melanogaster. Science, 302, 1727–1736.CrossRefGoogle Scholar
  22. Gmür, M. (2003). Co-citation analysis and the search for invisible colleges: A methodological evaluation. Scientometrics, 57(1), 27–57.CrossRefGoogle Scholar
  23. Hicks, D. M., & Katz, J. S. (1996). Where is science going? Science, Technology and Human Values, 21, 379–406.CrossRefGoogle Scholar
  24. Huisman, M., & Snijders, T. A. B. (2003). Statistical analysis of longitudinal network data with changing composition. Sociological Methods & Research, 32(2), 253–287.MathSciNetCrossRefGoogle Scholar
  25. Huisman, M., & Steglich, C. E. G. (2008). Treatment of non-response in longitudinal network studies. Social Networks, 30, 297–308.CrossRefGoogle Scholar
  26. Hummon, N. P., & Carley, K. (1993). Social networks as normal science. Social Networks, 15, 71–106.CrossRefGoogle Scholar
  27. Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social Networks, 11, 39–63.CrossRefGoogle Scholar
  28. Katz, J. S. (1994). Geographical proximity and scientific collaboration. Scientometrics, 31(1), 31–43.CrossRefGoogle Scholar
  29. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26, 1–18.CrossRefGoogle Scholar
  30. Kronegger, L., Mali, F., Ferligoj, A., & Doreian, P. (2012). Collaboration structures in Slovenian scientific communities. Scientometrics, 90(2), 631–647.CrossRefGoogle Scholar
  31. Laudel, G. (2002). What do we measure by co-authorships? Research Evaluation, 11, 3–15.CrossRefGoogle Scholar
  32. Laudel, G. (2006). The ‘quality myth’: Promoting and hindering conditions for acquiring research funds. Dordrecht: Springer.Google Scholar
  33. Lepori, B., van den Besselaar, P., Dinges, M., Potì, B., Reale, E., Slipersaeter S., et al. (2007). Comparing the evolution of national research policies: What patterns of changes? Science and Public Policy, 34(6), 372–388.CrossRefGoogle Scholar
  34. Merton, R. K. (1968). The Matthew effect in science. Science, 159, 53–63.CrossRefGoogle Scholar
  35. Newman, M. E. J. (2001a). Clustering and preferential attachment in growing networks. Physical Review E, 64, 025102.CrossRefGoogle Scholar
  36. Newman, M. E. J. (2001b). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98, 404.MathSciNetCrossRefzbMATHGoogle Scholar
  37. Newman, M. E. J. (2004). Who is the best connected scientist? A study of scientific co-authorship networks. In E. Ben-Naim, H. Frauenfelder, & Z. Toroczkai (Eds.), Complex networks (pp. 337–370). Berlin: Springer.CrossRefGoogle Scholar
  38. Newman, M. E. J. (2005). Power laws. Pareto distributions and Zipf’s law. Contemporary Physics, 46, 323–351.CrossRefGoogle Scholar
  39. Nooteboom, B., Vanhaverbeke, W., Duysters, G., Gilsing, V., & Van Den Oord, A. (2007). Optimal cognitive distance and absorptive capacity. Research Policy, 36, 1016–1034.CrossRefGoogle Scholar
  40. Norris, J. (1997). Markov chains. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  41. North, D. C. (1990). Institutions, institutional change and economic performance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. Reale, E, & Zinilli, A. (2014). Evaluation processes in research grant allocation: What is the relevance of scientific quality? In Paper presented at the 27th CHER conference. Rome. 8–10 September.Google Scholar
  43. Robbins, H., & Monro, S. (1951). A stochastic approximation method. Annals of Mathematical Statistics, 22, 400–407.MathSciNetCrossRefzbMATHGoogle Scholar
  44. Scherngell, T., & Lata, R. (2011). Towards an integrated European research area? Findings from Eigenvector spatially filtered spatial interaction models using European Framework Programme data. Papers in Regional Science, 92, 555–577.Google Scholar
  45. Sinha, S. (2006). Evidence for power-law tail of the wealth distribution in India. Physica A, 359, 555–562.CrossRefGoogle Scholar
  46. Smith. D. & J. S. Katz (2000). Collaborative approaches to research. A report to the Higher Education Funding Council for England. Centre for Policy Studies in Education, University of Leeds.Google Scholar
  47. Snijders, T. A. B. (1996). Stochastic actor-oriented models for network change. The Journal of mathematical Sociology, 21(1–2), 149–172.CrossRefzbMATHGoogle Scholar
  48. Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. In M. Sobel & M. Becker (Eds.), Sociological methodology (pp. 361–395). Boston, MA: Basil Blackwell.Google Scholar
  49. Snijders, T. A. B. (2005). Models for longitudinal network data. In P. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 215–247). New York (NY): Cambridge University Press.CrossRefGoogle Scholar
  50. Snijders, T. A. B., Steglich, C., Schweinberger, M., & Huisman, M. (2010). Manual for SIENA version 3.2. Provisional version. Oxford: University of Oxford, Department of Statistics.Google Scholar
  51. Vuong, Q. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307–333.MathSciNetCrossRefzbMATHGoogle Scholar
  52. Watts, D. J., Dodds, P. S., & Newman, M. E. J. (2002). Identity and search in social networks. Science, 296, 1302–1305.CrossRefGoogle Scholar
  53. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of’small-world’ networks. Nature, 393, 440–442.CrossRefGoogle Scholar
  54. Zinilli, A., & Cerulli, G. (2015). DATANET: A stata procedure to facilitate dataset organization for network analysis, Statistical Software Components, Boston College Department of Economics. http://EconPapers.repec.org/RePEc:boc:bocode:s458033. Published: 06-25-2015.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Sapienza University of RomeRomeItaly
  2. 2.IRCRES CNRRomeItaly

Personalised recommendations