, Volume 107, Issue 2, pp 627–643 | Cite as

A delineating procedure to retrieve relevant publication data in research areas: the case of nanocellulose

  • Douglas Henrique Milanez
  • Ed Noyons
  • Leandro Innocentini Lopes de Faria


Advances concerning publication-level classification system have been demonstrated striking results by dealing properly with emergent, complex and interdisciplinary research areas, such as nanotechnology and nanocellulose. However, less attention has been paid to propose a delineating method to retrieve relevant research areas on specific subjects. This study aims at proposing a procedure to delineate research areas addressed in case nanocellulose. We investigate how a bibliometric analysis could provide interesting insights into research about this sustainable nanomaterial. The research topics clustered by a Publication-level Classification System were used. The procedure involves an iterative process, which includes developing and cleaning a set of core publication regarding the subject and an analysis of clusters they are associated with. Nanocellulose was selected as the subject of study, but the methodology may be applied to any other research area or topic. A discussion about each step of the procedure is provided. The proposed delineation procedure enables us to retrieve relevant publications from research areas involving nanocellulose. Seventeen research topics were mapped and associated with current research challenges on nanocellulose.


Bibliometrics Research topics Science classification Nanotechnology 

Mathematics Subject Classification


JEL Classification




The authors are grateful to the São Paulo Research Foundation (Process Number 2012/16573-7) and comments from researchers of CWTS, NIT/Materiais, and ISSI Conference. We are thankful to the Graduate Program in Materials Science and Engineering at the Federal University of São Carlos for supporting this work. We also acknowledge the nanocellulose researchers for their valuable opinion on the research areas and on the map of topics.


  1. Arora, S. K., Porter, A. L., Youtie, J., & Shapira, P. (2012). Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics, 95(1), 351–370. doi: 10.1007/s11192-012-0903-6.CrossRefGoogle Scholar
  2. Azizi Samir, M. A. S., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612–626. doi: 10.1021/bm0493685.CrossRefGoogle Scholar
  3. Beecher, J. (2007). Wood, trees and nanotechnology. Nature Nanotechnology, 2(August), 466–467.CrossRefGoogle Scholar
  4. Boyack, K. W., Newman, D., Duhon, R. J., Klavans, R., Patek, M., Biberstine, J. R., et al. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PLoS ONE, 6(3), e18029. doi: 10.1371/journal.pone.0018029.CrossRefGoogle Scholar
  5. Brown, A. J. (1886). On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions, 49, 432–439. doi: 10.1039/ct8864900432.CrossRefGoogle Scholar
  6. Charreau, H., Foresti, M. L., & Vazquez, A. (2013). Nanocellulose patents trends: A comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Patents on Nanotechnology, 7(1), 56–80. Retrieved from
  7. Chirayil, C. J., Mathew, L., & Thomas, S. (2014). Review of recent research in nanocellulose preparation from different lignocellulosic fibers. Review of Advanced Materials Science, 37, 20–28.Google Scholar
  8. Dai, L., Long, Z., Ren, X., Deng, H., He, H., & Liu, W. (2014). Electrospun polyvinyl alcohol/waterborne polyurethane composite nanofibers involving cellulose nanofibers. Journal of Applied Polymer, 41051, 1–6. doi: 10.1002/app.41051.Google Scholar
  9. Domingues, R. M. A., Gomes, M. E., & Reis, R. L. (2014). The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 15, 2327–2346.CrossRefGoogle Scholar
  10. Dufresne, A. (2013). Nanocellulose: A new ageless bionanomaterial. Materials Today, 16(6), 220–227.CrossRefGoogle Scholar
  11. Durán, N., Lemes, A. P., & Seabra, A. B. (2012). Review of cellulose nanocrystals patents: Preparation, composites and general applications. Recent Patents on Nanotechnology, 6(1), 16–28. Retrieved from
  12. Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., et al. (2010). Review: Current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1–33. doi: 10.1007/s10853-009-3874-0.CrossRefGoogle Scholar
  13. Gardner, D. J., Oporto, G. S., Mills, R., & Samir, M. A. S. A. (2008). Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology, 22(5–6), 545–567. doi: 10.1163/156856108X295509.CrossRefGoogle Scholar
  14. Glanzel, W., & Schubert, A. (2003). A new classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56(3), 357–367.CrossRefGoogle Scholar
  15. Huang, C., Notten, A., & Rasters, N. (2011). Nanoscience and technology publications and patents: A review of social science studies and search strategies. The Journal of Technology Transfer, 36(2), 145–172. doi: 10.1007/s10961-009-9149-8.CrossRefGoogle Scholar
  16. Hullmann, A., & Meyer, M. (2003). Publications and patents in nanotechnology: An overview of previous studies and the state of the art. Scientometrics, 58(3), 507–527.CrossRefGoogle Scholar
  17. Igami, M. (2008). Exploration of the evolution of nanotechnology via mapping of patent applications. Scientometrics, 77(2), 289–308. doi: 10.1007/s11192-007-1973-8.CrossRefGoogle Scholar
  18. Igami, M., & Okazaki, T. (2007). Capturing nanotechnology’s current state of development via analysis of patents. Paris: OECD Publishing. Retrieved from
  19. Isogai, A. (2013). Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59(6), 449–459. doi: 10.1007/s10086-013-1365-z.CrossRefGoogle Scholar
  20. Kangas, H., Tamminen, T., Liitia, T., Hakala, T. K., Vorwerg, W., & Poppius-Levlin, K. (2014). Lignofibre (lgf) process—A flexible biorefinery for lignocellulosics. Cellulose Chemistry and Technology, 48(9–10), 765–771.Google Scholar
  21. Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie, 50(24), 5438–5466. doi: 10.1002/anie.201001273. (International ed. in English).CrossRefGoogle Scholar
  22. Kostoff, R. N., Koytcheff, R. G., & Lau, C. G. Y. (2009). Seminal nanotechnology literature: A review. Journal of Nanoscience and Nanotechnology, 9(11), 6239–6270. doi: 10.1166/jnn.2009.1465.CrossRefGoogle Scholar
  23. Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science categories. Scientometrics, 94(2), 589–593. doi: 10.1007/s11192-012-0784-8.CrossRefGoogle Scholar
  24. Leydesdorff, L., & Zhou, P. (2007). Nanotechnology as a field of science: Its delineation in terms of journals and patents. Scientometrics, 70(3), 693–713. doi: 10.1007/s11192-007-0308-0.CrossRefGoogle Scholar
  25. Mariano, M., Kissi, N. El, & Dufresne, A. (2014). Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. Journal of Polymer Science, 52, 791–806. doi: 10.1002/polb.23490.CrossRefGoogle Scholar
  26. Milanez, D. H., Amaral, R. M., Do, Faria, De, L. I. L., & Gregolin, J. A. R. (2013). Assessing nanocellulose developments using science and technology indicators. Materials Research, 16(3), 635–641. doi: 10.1590/S1516-14392013005000033.CrossRefGoogle Scholar
  27. Milanez, D. H., Conserva, A. C. A., Amaral, R. M., Faria, L. I. L., Gregolin, J. A. R., Carlos, A., et al. (2014a). Análise de bases de dados e termos de busca para estudos bibliométricos e monitoramento científico em nanocelulose. Em Questão, 20(3).114–133.Google Scholar
  28. Milanez, D. H., Faria, L. I. L., Amaral, R. M., Leiva, D. R., & Gregolin, J. A. R. (2014b). Patents in nanotechnology: An analysis using macro-indicators and forecasting curves. Scientometrics,. doi: 10.1007/s11192-014-1244-4.Google Scholar
  29. Milanez, D. H., & Noyons, E. C. M. (2015). A delineating procedure to retrieve relevant research areas on nanocellulose. In Proceedings of the 15th international conference on scientometrics and informetrics (pp. 959–970). Istambul, Turkey.Google Scholar
  30. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994. doi: 10.1039/c0cs00108b.CrossRefGoogle Scholar
  31. Neuhaus, C., & Daniel, H. D. (2009). A new reference standard for citation analysis in chemistry and related fields based on the sections of Chemical Abstracts. Scientometrics, 78(2), 219–229. doi: 10.1007/s11192-007-2007-2.CrossRefGoogle Scholar
  32. Newman, M. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–351. doi: 10.1080/00107510500052444.CrossRefGoogle Scholar
  33. Noyons, E., Buter, R., Buter, R., Schmoch, U., Van Raan, A., Heinze, T., et al. (2003). Mapping excellence in science and technology across Europe life sciences. Leiden: CWTS. Retrieved from
  34. Orts, W. J., Shey, J., Imam, S. H., Glenn, G. M., Guttman, M. E., & Revol, J.-F. (2005). Application of cellulose microfibrils in polymer nanocomposites. Journal of Polymers and the Environment, 13(4), 301–306. doi: 10.1007/s10924-005-5514-3.CrossRefGoogle Scholar
  35. Pääkkö, M., et al. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934–1941. doi: 10.1021/bm061215p.CrossRefGoogle Scholar
  36. Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728. doi: 10.1007/s11051-007-9266-y.CrossRefGoogle Scholar
  37. Price, D. J. S. (1976). A general theory of bibiiometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306. doi: 10.1002/asi.4630270505.CrossRefGoogle Scholar
  38. Ruiz-Castillo, J., & Waltman, L. (2015). Field-normalized citation impact indicators using algorithmically constructed classification systems of Science. Journal of Informetrics, 9(1), 1–39. doi: 10.1016/j.joi.2014.11.010.CrossRefGoogle Scholar
  39. Siqueira, G., Bras, J., & Dufresne, A. (2010). Cellulosic bionanocomposites: A review of preparation. Properties and Applications. Polymers, 2(4), 728–765. doi: 10.3390/polym2040728.Google Scholar
  40. Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17(3), 459–494. doi: 10.1007/s10570-010-9405-y.CrossRefGoogle Scholar
  41. Song, Q., Winter, W. T., Bujanovic, B. M., & Amidon, T. E. (2014). Nanofibrillated cellulose (NFC): A high-value co-product that improves the economics of cellulosic ethanol production. Energies, 7(2), 607–618. doi: 10.3390/en7020607.CrossRefGoogle Scholar
  42. TAPPI. (2011). Roadmap for the development of international standards for nanocellulose. Retrieved Feb 11, 2015.
  43. Tsukamoto, J., Durán, N., & Tasic, L. (2013). Nanocellulose and bioethanol production from orange waste using isolated microorganisms. Journal of the Brazilian Chemical Society, 24(9), 1537–1543. doi: 10.5935/0103-5053.20130195.Google Scholar
  44. Tubark, A. F., Snyder, F. W., & Sandberg, K. R. (1983). Microfibrillated cellulose: A new cellulose product: Properties, uses, and commercial potential. Journal of Applied Polymer Science: Applied Polymer Symposium, 30, 815–827.Google Scholar
  45. Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. ISSI Newsletter, 7(3), 50–54.Google Scholar
  46. Van Eck, N. J., & Waltman, L. (2015). VOSviewer. Retrieved July 10, 2015, from:
  47. Waltman, L., & van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392. doi: 10.1002/asi.22748.CrossRefGoogle Scholar
  48. Waltman, L., van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635. doi: 10.1016/j.joi.2010.07.002.CrossRefGoogle Scholar
  49. Zhu, J. Y., Sabo, R., & Luo, X. (2011). Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chemistry, 13(5), 1339. doi: 10.1039/c1gc15103g.CrossRefGoogle Scholar
  50. Zitt, M. (2015). Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation. Scientometrics, 102(3), 2223–2245. doi: 10.1007/s11192-014-1482-5.MathSciNetCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Centre for Information Technology in Materials (NIT/Materiais), Materials Engineering DepartmentFederal University of Sao CarlosSão CarlosBrazil
  2. 2.Centre for Science and Technology Studies (CWTS)Leiden UniversityLeidenThe Netherlands
  3. 3.Centre for Research in Technological and Organizational Intelligence (PERITO), Science Information DepartmentFederal University of Sao CarlosSão CarlosBrazil

Personalised recommendations