, Volume 107, Issue 1, pp 123–165 | Cite as

How are they different? A quantitative domain comparison of information visualization and data visualization (2000–2014)

  • Meen Chul Kim
  • Yongjun ZhuEmail author
  • Chaomei Chen


Information visualization and data visualization are often viewed as similar, but distinct domains, and they have drawn an increasingly broad range of interest from diverse sectors of academia and industry. This study systematically analyzes and compares the intellectual landscapes of the two domains between 2000 and 2014. The present study is based on bibliographic records retrieved from the Web of Science. Using a topic search and a citation expansion, we collected two sets of data in each domain. Then, we identified emerging trends and recent developments in information visualization and data visualization, captivated in intellectual landscapes, landmark articles, bursting keywords, and citation trends of the domains. We found out that both domains have computer engineering and applications as their shared grounds. Our study reveals that information visualization and data visualization have scrutinized algorithmic concepts underlying the domains in their early years. Successive literature citing the datasets focuses on applying information and data visualization techniques to biomedical research. Recent thematic trends in the fields reflect that they are also diverging from each other. In data visualization, emerging topics and new developments cover dimensionality reduction and applications of visual techniques to genomics. Information visualization research is scrutinizing cognitive and theoretical aspects. In conclusion, information visualization and data visualization have co-evolved. At the same time, both fields are distinctively developing with their own scientific interests.


Visual analytics Domain analysis Information visualization Data visualization Data science Scientometrics 



This work is in part supported by the NSF I/UCRC Center for Visual Decision and Informatics (NSF IIP-1160960).


  1. Aigner, W., Miksch, S., Schumann, H., & Tominski, C. (2011). Visualization of time-oriented data. London: Springer.CrossRefGoogle Scholar
  2. Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11, R106.CrossRefGoogle Scholar
  3. Andronis, C., Sharma, A., Virvilis, V., Deftereos, S., & Persidis, A. (2011). Literature mining, ontologies and information visualization for drug repurposing. Briefings in Bioinformatics, 12(4), 357–368.CrossRefGoogle Scholar
  4. Asuncion, A., & Newman, D. (2007). UCI machine learning repository. Accessed 30 June 2015.
  5. Bederson, B., & Shneiderman, B. (2003). The craft of information visualization: Readings and reflections. San Francisco, CA: Morgan Kaufmann.Google Scholar
  6. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.zbMATHCrossRefGoogle Scholar
  7. Berkovitch, F., Nicolet, Y., Wan, J. T., Jarrett, J. T., & Drennan, C. L. (2004). Crystal structure of biotin synthase: An s-adenosylmethionine-dependent radical enzyme. Science, 303(5654), 76–79.CrossRefGoogle Scholar
  8. Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., et al. (2004). Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 9(9), 418–425.CrossRefGoogle Scholar
  9. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.zbMATHGoogle Scholar
  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.CrossRefGoogle Scholar
  11. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., et al. (2001). Minimum information about a microarray experiment (MIAME)—Toward standards for microarray data. Nature Genetics, 29, 365–371.CrossRefGoogle Scholar
  12. Bui, B. T. S., Florentin, D., Fournier, F., Ploux, O., Méjean, A., & Marquet, A. (1998). Biotin synthase mechanism: On the origin of sulphur. FEBS Letters, 440(1–2), 226–230.Google Scholar
  13. Bui, B. T. S., Florentin, D., Marquet, A., Benda, R., & Trautwein, A. X. (1999). Mössbauer studies of Escherichia coli biotin synthase: Evidence for reversible interconversion between [2Fe–2S](2+) and [4Fe–4S](2+) clusters. FEBS Letters, 459(3), 411–414.CrossRefGoogle Scholar
  14. Card, S. K., Mackinlay, J. D., & Schneiderman, B. (1999). Readings in information visualization: Using vision to think. San Francisco, CA: Morgan Kaufmann.Google Scholar
  15. Cheek, J., & Broderick, J. B. (2001). Adenosylmethionine-dependent iron–sulfur enzymes: Versatile clusters in a radical new role. Journal of Biological Inorganic Chemistry, 6(3), 209–226.CrossRefGoogle Scholar
  16. Chen, C. (1999). Information visualisation and virtual environments. London: Springer.CrossRefGoogle Scholar
  17. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.CrossRefGoogle Scholar
  18. Chen, C. (2010). Information visualization. Wiley Interdisciplinary Review: Computational Statistics, 2(4), 387–403.CrossRefGoogle Scholar
  19. Chen, C., Dubin, R., & Kim, M. C. (2014a). Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opinion on Biological Therapy, 14(9), 1295–1317.CrossRefGoogle Scholar
  20. Chen, C., Dubin, R., & Kim, M. C. (2014b). Orphan drugs and rare diseases: A scientometric review (2000–2014). Expert Opinion on Orphan Drugs, 2(7), 709–724.CrossRefGoogle Scholar
  21. Chen, C. H., Härdle, W. K., & Unwin, A. (Eds.). (2008). Handbook of data visualization (Springer handbooks of computational statistics). Santa Clara, CA: Springer.Google Scholar
  22. Chen, C., Hu, Z., Liu, S., & Tseng, H. (2012). Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opinions on Biological Therapy, 12(5), 593–608.CrossRefGoogle Scholar
  23. Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of co-citation clusters: A multiple-perspective co-citation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409.CrossRefGoogle Scholar
  24. Chen, C., & Leydesdorff, L. (2014). Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. Journal of the American Society for Information Science and Technology, 65(2), 334–351.CrossRefGoogle Scholar
  25. Chinwalla, A. T., Cook, L. L., Delehaunty, K. D., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420, 520–562.CrossRefGoogle Scholar
  26. Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 521–554.MathSciNetCrossRefGoogle Scholar
  27. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.zbMATHCrossRefGoogle Scholar
  28. Cosper, N. J., Booker, S. J., Ruzicka, F., Frey, P. A., & Scott, R. A. (2000). Direct Fe–S cluster involvement in generation of a radical in lysine 2,3-aminomutase. Biochemistry, 39(51), 15668–15673.CrossRefGoogle Scholar
  29. Davis, A. P., Murphy, C. G., Johnson, R., Lay, J. M., Lennon-Hopkins, K., Saraceni-Richards, C., et al. (2013). The comparative toxicogenomics database: Update 2013. Nucleic Acids Research, 41(D1), D1104–D1114.CrossRefGoogle Scholar
  30. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–407.CrossRefGoogle Scholar
  31. DellValle, M. (2010). Electronic tongues employing electrochemical sensors. Electroanalysis, 22(14), 1539–1555.Google Scholar
  32. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefGoogle Scholar
  33. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. London: Wiley-Interscience.zbMATHGoogle Scholar
  34. Duin, E. C., Lafferty, M. E., Crouse, B. R., Allen, R. M., Sanyal, I., Flint, D. H., et al. (1997). [2Fe–2S] to [4Fe–4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry, 36(39), 11811–11820.CrossRefGoogle Scholar
  35. Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14863–14868.CrossRefGoogle Scholar
  36. Ellis, G., & Dix, A. (2007). A taxonomy of clutter reduction for information visualisation. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1216–1223.CrossRefGoogle Scholar
  37. Elmqvist, N., Moere, A. V., Jetter, H. C., Cernea, D., Reiterer, H., & Jankun-Kelly, T. J. (2011). Fluid interaction for information visualization. Information Visualization, 10(4), 327–340.CrossRefGoogle Scholar
  38. Fabrikant, S. I., & Buttenfield, B. P. (2001). Formalizing semantic spaces for information access. Annals of the Association of American Geographers, 91(2), 263–280.CrossRefGoogle Scholar
  39. Faisal, S., Blandford, A., & Potts, H. W. (2013). Making sense of personal health information: Challenges for information visualization. Health Informatics Journal, 19(3), 198–217.CrossRefGoogle Scholar
  40. Fekete, J. (2004). The infovis toolkit. In INFOVIS 2004 IEEE symposium on information visualization (pp. 167–174).Google Scholar
  41. Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171.CrossRefGoogle Scholar
  42. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.CrossRefGoogle Scholar
  43. Fontecave, M., Mulliez, E., & Ollagnier-de-Choudens, S. (2001). Adenosylmethionine as a source of 5′-deoxyadenosyl radicals. Current Opinion in Chemical Biology, 5(5), 506–512.CrossRefGoogle Scholar
  44. Francisco, A. P., Vaz, C., Monteiro, P. T., Melo-Cristino, J., Ramirez, M., & Carriço, J. A. (2012). PHYLOViZ: Phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics, 13, 87.CrossRefGoogle Scholar
  45. Frey, P. A. (2001). Radical mechanisms of enzymatic catalysis. Annual Review of Biochemistry, 70, 121–148.CrossRefGoogle Scholar
  46. Frey, P. A., Hegeman, A. D., & Ruzicka, F. J. (2008). The radical SAM superfamily. Critical Reviews in Biochemistry and Molecular Biology, 43(1), 63–88.CrossRefGoogle Scholar
  47. Frey, P. A., & Magnusson, O. T. (2003). s-Adenosylmethionine: A wolf in sheep’s clothing, or a rich man’s adenosylcobalamin? Chemical Reviews, 103(6), 2129–2148.CrossRefGoogle Scholar
  48. Friendly, M. (2008). Milestones in the history of thematic cartography, statistical graphics, and data visualization. Accessed 7 February 2015.
  49. Gaviria, A. R. (2008). When is information visualization art? Determining the critical criteria. Leonardo, 41(5), 479–482.CrossRefGoogle Scholar
  50. Gehlenborg, N., O’Donoghue, S. I., Baliga, N. S., Goesmann, A., Hibbs, M. A., Kitano, H., et al. (2010). Visualization of omics data for systems biology. Nature Methods, 7(3 Suppl), S56–S68.CrossRefGoogle Scholar
  51. Grove, T. L., Benner, J. S., Radle, M. I., Ahlum, J. H., Landgraf, B. J., Krebs, C., et al. (2011). A radically different mechanism for s-adenosylmethionine—Dependent methyltransferases. Science, 332(6029), 604–607.CrossRefGoogle Scholar
  52. Guianvarc’h, D., Florentin, D., Bui, B. T. S., Nunzi, F., & Marquet, A. (1997). Biotin synthase, a new member of the family of enzymes which uses s-adenosylmethionine as a source of deoxyadenosyl radical. Biochemical and Biophysical Research Communications, 236(2), 402–406.CrossRefGoogle Scholar
  53. Henshaw, T. F., Cheek, J., & Broderick, J. B. (2000). The [4Fe–4S]1+ cluster of pyruvate formate-lyase activating enzyme generates the glycyl radical on pyruvate formate-lyase: EPR-detected single turnover. Journal of the American Chemistry Society, 122(34), 8331–8332.CrossRefGoogle Scholar
  54. Herman, I., Melancon, G., & Marshall, M. S. (2000). Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics, 6(1), 24–43.CrossRefGoogle Scholar
  55. Hewitson, K. S., Ollagnier-de-Choudens, S., Sanakis, Y., Shaw, N. M., Baldwin, J. E., Münck, E., et al. (2001). The iron–sulfur center of biotin synthase: Site-directed mutants. Journal of Biological Inorganic Chemistry, 7(1–2), 83–93.Google Scholar
  56. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science and Engineering, 9(3), 90–95.CrossRefGoogle Scholar
  57. Inselberg, A., & Dimsdale, B. (1990). Parallel coordinates: A tool for visualizing multi-dimensional geometry. In Visualization90 proceedings of the first IEEE conference on visualization (pp. 361–378).Google Scholar
  58. Isenberg, P. (2007). Interactive tree comparison for co-located collaborative information visualization. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1232–1239.MathSciNetCrossRefGoogle Scholar
  59. Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., & Moller, T. (2013). A systematic review on the practice of evaluating visualization. IEEE Transactions on Visualization and Computer Graphics, 19(12), 2818–2827.CrossRefGoogle Scholar
  60. Jarrett, J. T. (2003). The generation of 5′-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes. Current Opinion in Chemical Biology, 7(2), 174–182.CrossRefGoogle Scholar
  61. Jenssen, T., Lægreid, A., Komorowski, J., & Hovig, E. (2001). A literature network of human genes for high-throughput analysis of gene expression. Nature Genetics, 28, 21–28.Google Scholar
  62. Jolliffe, I. T. (2002). Principal component analysis. Secaucus, NJ: Springer.zbMATHGoogle Scholar
  63. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40(D1), D109–D114.CrossRefGoogle Scholar
  64. Kaul, S., Koo, H., Jenkins, J., et al. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796–815.CrossRefGoogle Scholar
  65. Kersten-Oertel, M., Jannin, P., & Collins, D. L. (2013). The state of the art of visualization in mixed reality image guided surgery. Computerized Medical Imaging and Graphics, 37(2), 98–112.CrossRefGoogle Scholar
  66. Kim, M. C., & Chen, C. (2015). A scientometric review of emerging trends and new developments in recommendation systems. Scientometrics, 104(1), 239–263.CrossRefGoogle Scholar
  67. Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In KDD02 Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 91–101).Google Scholar
  68. Kohonent, T. (1997). Self-organizing maps. Secaucus, NJ: Springer.CrossRefGoogle Scholar
  69. Krzywinski, M. I., Schein, J. E., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645.CrossRefGoogle Scholar
  70. Külzer, R., Pils, T., Kappl, R., Hüttermann, J., & Knappe, J. (1998). Reconstitution and characterization of the polynuclear iron–sulfur cluster in pyruvate formate-lyase-activating enzyme. The Journal of biological chemistry, 273(9), 4897–4903.CrossRefGoogle Scholar
  71. Lam, H., Bertini, E., Isenberg, P., Plaisant, C., & Carpendale, S. (2011). Empirical studies in information visualization: Seven scenarios. IEEE Transactions on Visualization and Computer Graphics, 18(9), 1520–1536.CrossRefGoogle Scholar
  72. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.CrossRefGoogle Scholar
  73. Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25.CrossRefGoogle Scholar
  74. Layer, G., Moser, J., Heinz, D. W., Jahn, D., & Schubert, W. (2003). Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. The EMBO Journal, 22, 6214–6224.CrossRefGoogle Scholar
  75. Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  76. Leung, Y. K., & Apperley, M. D. (1994). A review and taxonomy of distortion-oriented presentation techniques. ACM Transactions on Computer-Human Interaction (TOCHI), 1(2), 126–160.CrossRefGoogle Scholar
  77. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760.CrossRefGoogle Scholar
  78. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.CrossRefGoogle Scholar
  79. Lieder, K. W., Booker, S., Ruzicka, F. J., Beinert, H., Reed, G. H., & Frey, P. A. (1998). s-Adenosylmethionine-dependent reduction of lysine 2,3-aminomutase and observation of the catalytically functional iron–sulfur centers by electron paramagnetic resonance. Biochemistry, 37(8), 2578–2585.CrossRefGoogle Scholar
  80. Liu, S., Cui, W., Wu, Y., & Liu, M. (2014). A survey on information visualization: Recent advances and challenges. The Visual Computer, 30(12), 1373–1393.CrossRefGoogle Scholar
  81. Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., et al. (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology, 14(13), 1675–1680.CrossRefGoogle Scholar
  82. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: The MIT Press.Google Scholar
  83. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190.CrossRefGoogle Scholar
  84. Marquet, A. (2001). Enzymology of carbon–sulfur bond formation. Current Opinion in Chemical Biology, 5(5), 541–549.CrossRefGoogle Scholar
  85. McKenna, A., Hanna, B., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.CrossRefGoogle Scholar
  86. Mehlan, H., Schmidt, F., Weiss, S., Schüler, J., Fuchs, S., Riedel, K., et al. (2013). Data visualization in environmental proteomics. Proteomics, 13(18–19), 2805–2821.Google Scholar
  87. Miller, J. R., Busby, R. W., Jordan, S. W., Cheek, J., Henshaw, T. F., Ashley, G. W., et al. (2000). Escherichia coli LipA is a lipoyl synthase: In vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl–acyl carrier protein. Biochemistry, 39(49), 15166–15178.CrossRefGoogle Scholar
  88. Moreland, J. L., Gramada, A., Buzko, O. V., Zhang, Q., & Bourne, P. E. (2005). The molecular biology toolkit (MBT): A modular platform for developing molecular visualization applications. BMC Bioinformatics, 6, 21.CrossRefGoogle Scholar
  89. Morse, E., Lewis, M., & Olsen, K. A. (2000). Evaluating visualizations: Using a taxonomic guide. International Journal of Human-Computer Studies, 53(5), 637–662.zbMATHCrossRefGoogle Scholar
  90. Munzner, T. (2009). A nested model for visualization design and validation. IEEE Transactions on Visualization and Computer Graphics, 15(6), 921–928.CrossRefGoogle Scholar
  91. Ollagnier, S., Mulliez, E., Schmidt, P. P., Eliasson, R., Gaillardi, J., Deronzier, C., et al. (1997). Activation of the anaerobic ribonucleotide reductase from Escherichia coli. The Journal of biological Chemistry, 272(39), 24216–24223.CrossRefGoogle Scholar
  92. Ollagnier-De-Choudens, S., Mulliez, E., Hewitson, K. S., & Fontecave, M. (2002a). Biotin synthase is a pyridoxal phosphate-dependent cysteine desulfurase. Biochemistry, 41(29), 9145–9152.CrossRefGoogle Scholar
  93. Ollagnier-de-Choudens, S., Sanakis, Y., Hewitson, K. S., Roach, P., Baldwin, J. E., Münck, E., et al. (2000). Iron–sulfur center of biotin synthase and lipoate synthase. Biochemistry, 39(14), 4165–4173.CrossRefGoogle Scholar
  94. Ollagnier-de-Choudens, S., Sanakis, Y., Hewitson, K. S., Roach, P., Münck, E., & Fontecave, M. (2002b). Reductive cleavage of s-adenosylmethionine by biotin synthase from Escherichia coli. The Journal of biological chemistry, 277(16), 13449–13454.CrossRefGoogle Scholar
  95. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, Article ID 156869.Google Scholar
  96. Orford, S., Harris, R., & Dorling, D. (1999). Geography: Information visualization in the social sciences. Social Science Computer Review, 17(3), 289–304.CrossRefGoogle Scholar
  97. Penterman, R., Klink, S. I., de Koning, H., Nisato, G., & Broer, D. J. (2002). Single-substrate liquid–crystal displays by photo-enforced stratification. Nature, 417, 55–58.CrossRefGoogle Scholar
  98. Pérez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific computing. Computing in Science and Engineering, 9(3), 21–29.CrossRefGoogle Scholar
  99. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148.CrossRefGoogle Scholar
  100. Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., et al. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19, 45–50.CrossRefGoogle Scholar
  101. Rabow, A. A., Shoemaker, R. H., Sausville, E. A., & Covell, D. G. (2002). Mining the national cancer institute’s tumor-screening database: Identification of compounds with similar cellular activities. Journal of Medical Chemistry, 45(4), 818–840.CrossRefGoogle Scholar
  102. Rauber, A., Merkl, D., & Dittenbach, M. (2002). The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks, 13(6), 1331–1341.zbMATHCrossRefGoogle Scholar
  103. Rhee, S. Y., Beavis, W., Berardini, T. Z., Chen, G., Dixon, D., Doyle, A., et al. (2003). The Arabidopsis Information Resource (TAIR): A model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Research, 31(1), 224–228.CrossRefGoogle Scholar
  104. Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge, MA: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  105. Riul, A., Jr, Dantas, C. A. R., Miyazakic, C. M., & Oliveira, O. N., Jr. (2010). Recent advances in electronic tongues. Analyst, 135, 2481–2495.CrossRefGoogle Scholar
  106. Robertson, G. G., Card, S. K., & Mackinlay, J. D. (1993). Information visualization using 3D interactive animation. Communications of the ACM, 36(4), 57–71.CrossRefGoogle Scholar
  107. Robertson, G. G., Mackinlay, J. D., & Card, S. K. (1991). Cone trees: Animated 3D visualizations of hierarchical information. In CHI91 Proceedings of the SIGCHI conference on human factors in computing systems (pp. 189–194).Google Scholar
  108. Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., et al. (2011). Integrative genomics viewer. Nature Biotechnology, 29, 24–26.CrossRefGoogle Scholar
  109. Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., et al. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. The Plant Cell, 13(1), 11–29.CrossRefGoogle Scholar
  110. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. The Plant Journal, 23(1), 131–142.CrossRefGoogle Scholar
  111. Rzhetsky, A., Iossifov, I., Koike, T., Krauthammer, M., Kra, P., Morris, M., et al. (2004). GeneWays: A system for extracting, analyzing, visualizing, and integrating molecular pathway data. Journal of Biomedical Informatics, 37(1), 43–53.CrossRefGoogle Scholar
  112. Salomonis, N., Hanspers, K., Zambon, A. C., Vranizan, K., Lawlor, S. C., Dahlquist, K. D., et al. (2007). GenMAPP 2: New features and resources for pathway analysis. BMC Bioinformatics, 8, 217.CrossRefGoogle Scholar
  113. Sanyal, I., Cohen, G., & Flint, D. H. (1994). Biotin synthase: Purification, characterization as a [2Fe–2S]cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry, 33(12), 3625–3631.CrossRefGoogle Scholar
  114. Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235), 467–470.CrossRefGoogle Scholar
  115. Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., et al. (2000). A gene expression database for the molecular pharmacology of cancer. Nature Genetics, 23(3), 236–244.CrossRefGoogle Scholar
  116. Schneiderman, B. (1998). Designing the user interface: Strategies for effective human–computer interaction. Boston, MA: Addison-Wesley.Google Scholar
  117. Segel, E. (2010). Narrative visualization: Telling stories with data. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1139–1148.CrossRefGoogle Scholar
  118. Shannon, P., Markiel, A., Ozier, W., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.CrossRefGoogle Scholar
  119. Sofia, H. D., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., & Miller, N. E. (2001). Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Research, 29(5), 1097–1106.CrossRefGoogle Scholar
  120. Spence, B. (2000). Information visualization. New York, NY: ACM Press.Google Scholar
  121. Stasko, J., Görg, C., & Liu, Z. (2008). Jigsaw: supporting investigative analysis through interactive visualization. Information Visualization, 7(2), 118–132.CrossRefGoogle Scholar
  122. Su, A. I., Cooke, M. P., Ching, K. A., Hakak, Y., Walker, J. R., Wiltshire, T., et al. (2002). Large-scale analysis of the human and mouse transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4465–4470.CrossRefGoogle Scholar
  123. Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., et al. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6062–6067.CrossRefGoogle Scholar
  124. Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. The Journal of Machine Learning Research, 8, 1027–1061.zbMATHGoogle Scholar
  125. Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 62(6), 817–836.CrossRefGoogle Scholar
  126. Swayne, D. F., Cook, D., & Buja, A. (1998). XGobi: Interactive dynamic data visualization in the X window system. Journal of Computational and Graphical Statistics, 7(1), 113–130.Google Scholar
  127. Tao, D., Li, X., Wu, X., & Maybank, S. J. (2008). Geometric mean for subspace selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 260–274.Google Scholar
  128. Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039.CrossRefGoogle Scholar
  129. Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A Global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.CrossRefGoogle Scholar
  130. The ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.CrossRefGoogle Scholar
  131. Thomas, J. J., & Cook, K. A. (2005). Illuminating the path: The R&D agenda for visual analytics. USA: National Visualization and Analytics Center.Google Scholar
  132. Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14(2), 178–192.CrossRefGoogle Scholar
  133. Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika, 17, 401–419.MathSciNetzbMATHCrossRefGoogle Scholar
  134. Törönen, P., Kolehmainen, M., & Castrén, E. (1999). Analysis of gene expression data using self-organizing maps. FEBS Letters, 451(2), 142–146.CrossRefGoogle Scholar
  135. Tory, M. (2005). Evaluating visualizations: Do expert reviews work? IEEE Computer Graphics and Applications, 25(5), 8–11.CrossRefGoogle Scholar
  136. Tufte, E. (1983). The visual display of quantitative information. Cheshire, Connecticut: Graphics Press.Google Scholar
  137. Tufte, E. (1990). Envisioning information. Cheshire, CT: Graphics Press.Google Scholar
  138. Tukey, J. (1977). Exploratory data analysis. Boston, MA: Addison-Wesley.zbMATHGoogle Scholar
  139. Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 5116–5121.zbMATHCrossRefGoogle Scholar
  140. Ugulava, N. B., Gibney, B. R., & Jarrett, J. T. (2001a). Biotin synthase contains two distinct iron–sulfur cluster binding sites: Chemical and spectroelectrochemical analysis of iron–sulfur cluster interconversions. Biochemistry, 40(28), 8343–8351.CrossRefGoogle Scholar
  141. Ugulava, N. B., Sacanell, C. J., & Jarrett, J. T. (2001b). Spectroscopic changes during a single turnover of biotin synthase: Destruction of a [2Fe–2S] cluster accompanies sulfur insertion. Biochemistry, 40(28), 8352–8358.CrossRefGoogle Scholar
  142. Ugulava, N. B., Surerus, K. K., & Jarrett, J. T. (2002). Evidence from Mössbauer spectroscopy for distinct [2Fe–2S]2+ and [4Fe–4S]2+ cluster binding sites in biotin synthase from Escherichia coli. Journal of the American Chemistry Society, 124(31), 9050–9051.CrossRefGoogle Scholar
  143. Vaas, L. A. I., Sikorski, J., Michael, V., Göker, M., & Klenk, H. (2012). Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS ONE, 7(4), e34846.CrossRefGoogle Scholar
  144. van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. The Journal of Machine Learning Research, 9, 2579–2605.zbMATHGoogle Scholar
  145. Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Serial analysis of gene expression. Science, 270(5235), 484–487.CrossRefGoogle Scholar
  146. Venna, J., Peltonen, J., Nybo, K., Aidos, H., & Kaski, S. (2010). Information retrieval perspective to nonlinear dimensionality reduction for data visualization. The Journal of Machine Learning Research, 11, 451–490.MathSciNetzbMATHGoogle Scholar
  147. Venter, J. C., Adams, M. D., & Myers, E. W. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.CrossRefGoogle Scholar
  148. Vey, J. L., & Drennan, C. L. (2011). Structural insights into radical generation by the radical SAM superfamily. Chemical Reviews, 111(4), 2487–2506.CrossRefGoogle Scholar
  149. Walsby, C. J., Hong, W., Broderick, W. E., Cheek, J., Ortillo, D., Broderick, J. B., et al. (2002a). Electron–nuclear double resonance spectroscopic evidence that s-adenosylmethionine binds in contact with the catalytically active [4Fe–4S]+ cluster of pyruvate formate-lyase activating enzyme. Journal of the American Chemistry Society, 124(12), 3143–3151.CrossRefGoogle Scholar
  150. Walsby, C. J., Ortillo, D., Broderick, W. E., Broderick, J. B., & Hoffman, B. M. (2002b). An anchoring role for FeS clusters: Chelation of the amino acid moiety of s-adenosylmethionine to the unique iron site of the [4Fe–4S] cluster of pyruvate formate-lyase activating enzyme. Journal of the American Chemistry Society, 124(38), 11270–11271.CrossRefGoogle Scholar
  151. Ware, C. (2000). Information visualization: Perception for design. San Francisco, CA: Morgan Kaufmann.Google Scholar
  152. Ware, C. (2004). Information visualization: Perception for design. San Francisco, CA: Morgan Kaufmann.Google Scholar
  153. Wicks, P., Massagli, M., Frost, J., Brownstein, C., Okun, S., Vaughan, T., et al. (2010). Sharing health data for better outcomes on PatientsLikeMe. Journal of Medical Internet Research, 12(2), e19.CrossRefGoogle Scholar
  154. Yan, F., LaMarre, J. M., Röhrich, R., Wiesner, J., Jomaa, H., Mankin, A. S., et al. (2010). RlmN and Cfr are radical SAM enzymes involved in methylation of ribosomal RNA. Journal of the American Chemistry Society, 132(11), 3953–3964.CrossRefGoogle Scholar
  155. Yi, J. S., Kang, Y. A., Stasko, J. T., & Jacko, J. A. (2007). Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1224–1231.CrossRefGoogle Scholar
  156. Yin, H. (2008). On multidimensional scaling and the embedding of self-organising maps. Neural Networks, 21(3), 160–169.CrossRefGoogle Scholar
  157. Yin, H., & Huang, W. (2010). Adaptive nonlinear manifolds and their applications to pattern recognition. Information Sciences, 180(14), 2649–2662.MathSciNetzbMATHCrossRefGoogle Scholar
  158. Zhang, B., Schmoyer, D., Kirov, S., & Snoddy, J. (2004). GOTree machine (GOTM): A web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics, 5, 16.CrossRefGoogle Scholar
  159. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., & Gruissem, W. (2004). GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiology, 136(1), 2621–2632.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Drexel University College of Computing and InformaticsPhiladelphiaUSA

Personalised recommendations