Advertisement

Scientometrics

, Volume 108, Issue 2, pp 531–557 | Cite as

Theories in communication science: a structural analysis using webometrics and social network approach

  • Gohar Feroz Khan
  • Sungjoon Lee
  • Ji Young Park
  • Han Woo Park
Article

Abstract

This exploratory study analyzes the networked structure of theories in social sciences represented by co-occurrences on the World Wide Web. For this, co-occurrences of communication science theories were retrieved from the Web and analyzed using social network analysis tools. Several networks and node-level properties were measured to examine the relationships of theories in terms of co-occurrences. Communication science theories were grouped into four clusters. The results shed some important light on structural dynamics of communication science theories on the academic and social Web.

Keywords

Social science Theories Communication science Structural dynamics Web Webometrics Social network analysis 

References

  1. Anderson, J. A. (1996). Communication theory: Epistemological Foundations. New York, NY: The Guilford Press.Google Scholar
  2. Atkin, C., & Marshall, A. (1996). Health communication. In M. B. Salwen & D. W. Stacks (Eds.), An integrated approach to communication theory and research (pp. 479–495). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  3. Barnett, G. A. (2008). Scholarly communication of communication studies. In D. Wolfgang (Ed.), The international encyclopedia of communication. Blackwell Reference Online. Retrieved from http://www.blackwellreference.com/subscriber/tocnode.html?id=g9781405131995_yr2013_chunk_g978140513199524_ss137-1
  4. Barnett, G. A., Huh, C., Kim, Y., & Park, H. W. (2011). Citations among communication journals and other disciplines: A network analysis. Scientometrics, 88(2), 449–469.CrossRefGoogle Scholar
  5. Barnett, G. A., Ruiz, J. B., & Park, H.W. (2015). Globalization or decentralization of hyperlinked content among websites: An examination of website co-citations. A paper presented to HICSS.Google Scholar
  6. Barnett, G. A., & Thayer, L. (1997). Organization-communication, emerging perspectives V: The renaissance in systems thinking. Greenwich, CT: Ablex.Google Scholar
  7. Berger, C. R., Roloff, M. E., & Roskos-Ewoldsen, D. R. (2009). What is communication science. In C. R. Berger, M. E. Roloff, & D. R. Roskos-Ewoldsen (Eds.), The handbook of communication science (2nd ed., pp. 3–20). Thousand Oaks, CA: Sage.Google Scholar
  8. Berlo, D. K. (1960). The process of communication. New York: Holt, Reinehart, & Winston.Google Scholar
  9. Borgman, C. L., & Furner, J. (2002). Scholarly communication and bibliometrics. In B. Cronin (Ed.), Annual review of information science and technology (pp. 3–72). Medford, NJ: Information Today.Google Scholar
  10. Bornmann, L. (2014). Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. Journal of Informetrics, 8(4), 895–903.CrossRefGoogle Scholar
  11. Brousius, H.-B. (2011). Mass communication. In Oxford bibliographies. Retrieved July 30, 2014, from http://www.oxfordbibliographies.com/view/document/obo-9780199756841/obo-9780199756841-0022.xml#obo-9780199756841-0022-bibItem-0005
  12. Bryant, J., & Pribanic-Smith, E. J. (2009). A historical overview of research in communication science. In C. R. Berger, M. E. Roloff, & D. R. Roskos-Ewoldsen (Eds.), The handbook of communication science (2nd ed., pp. 21–36). Thousand Oaks, CA: Sage.Google Scholar
  13. Callon, M., Law, L., & Rip, A. (1986). Mobilising resources through texts. In M. Callon, J. Rip, & A. Rip (Eds.), Mapping the dynamics and technology: sociology of science in the real world (pp. 84–99). London: The Macmillan Press.CrossRefGoogle Scholar
  14. Cho, C.-H., & Khang, H. (2006). The state of internet-related research in communications, marketing, and advertising: 1994–2003. Journal of Advertising, 35(3), 143–163.CrossRefGoogle Scholar
  15. Chu, H., He, S., & Thewall, M. (2002). Library and information science school in Canada and USA: A webometric perspective. Journal of Education for Library and Information Science, 43(2), 110–125.CrossRefGoogle Scholar
  16. Chung, C. J., Barnett, G. A., Kim, K., & Lackaff, D. (2013). An analysis on communication theory and discipline. Scientometrics, 95(3), 985–1005.CrossRefGoogle Scholar
  17. Chung, C. J., Lee, S., Barnett, G. A., & Kim, J. H. (2009). A comparative network analysis of the Korean Society of Journalism and Communication Studies (KSJCS) and the International Communication Association (ICA) in the era of hybridization. Asian Journal of Communication, 19(2), 170–191.CrossRefGoogle Scholar
  18. Chung, C. J., & Park, H. W. (2012). Web visibility of scholars in media and communication journals. Scientometrics, 93(1), 207–215.CrossRefGoogle Scholar
  19. Craig, R. T. (1993). Why are there so many communication theories? Journal of Communication, 43(3), 26–33.MathSciNetCrossRefGoogle Scholar
  20. Craig, R. T. (1999). Communication theory as a field. Communication Theory, 9(2), 119–161.CrossRefGoogle Scholar
  21. Crane, D. (1972). Invisible colleges. Chicago, IL: University of Chicago Press.Google Scholar
  22. Cutlip, S. C. (1994). The unseen power: Public relations, a history. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  23. Delgado, E., & Repiso, R. (2013). The impact of scientific journals of communication: Comparing Google Scholar metrics, Web of Science and Scopus. Comunicar, 41, 45–52.CrossRefGoogle Scholar
  24. Delia, J. G. (1987). Communication research: A history. In C. R. Berger & S. H. Chaffee (Eds.), Handbook of communication science (pp. 20–98). Newbury Park, CA: Sage.Google Scholar
  25. Dugas, A. F., Hsieh, Y. H., Levin, S. R., Pines, J. M., Mareiniss, D. P., Mohareb, A., & Rothman, R. E. (2012). Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Clinical Infectious Diseases, 54(4), 463–469.CrossRefGoogle Scholar
  26. Entman, R. M. (1993). Framing: Toward clarification of a fractured paradigm. Journal of Communication, 43(4), 51–58.CrossRefGoogle Scholar
  27. Fitch, K. L. M., & Sanders, R. E. (2005). Handbook of language and social interaction. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  28. Freeman, L. C. (2004). The development of social network analysis: A study in the sociology of science. Vancouver, Canada: Empirical Press.Google Scholar
  29. Gillian, D. (2009). Advertising as communication. London: Methuen.Google Scholar
  30. Goldhaber, G. M., & Barnett, G. A. (1988). Handbook of organizational communication. Norwood, NH: Ablex.Google Scholar
  31. Grönlund, A. (2005). State of the art in e-Gov research: Surveying conference publications. International Journal of Electronic Government, 1(4), 1–25.CrossRefGoogle Scholar
  32. Gruzd, A., Staves, K., & Wilk, A. (2012). Connected scholars: Examining the role of social media in research practices of faculty using the UTAUT model. Computers in Human Behavior, 28(6), 2340–2350.CrossRefGoogle Scholar
  33. Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California.Google Scholar
  34. Hearth, R. L. (2005). Encyclopedia of public relations. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  35. Huang, Y., Schuehle, J., Porter, A. L., & Youtie, J. (2015). A systematic method to create search strategies for emerging technologies based on the Web of Science. Scientometrics,. doi: 10.1007/s11192-015-1638-y.Google Scholar
  36. Jiang, K. (2014). International student flows between Asia, Australia, and Russia: A network analysis. Journal of Contemporary Eastern Asia, 13(1), 83–98.Google Scholar
  37. Ke, Q., Ferrara, E., Radicchi, F., & Flammini, A. (2015). Defining and identifying Sleeping Beauties in science. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7426–7431. doi: 10.1073/pnas.1424329112.CrossRefGoogle Scholar
  38. Kenekayoro, P., Buckley, K., & Thelwall, M. (2015). Clustering research group website homepages. Scientometrics, 102(3), 2023–2039.CrossRefGoogle Scholar
  39. Kim, L. (2013). Media framing of stem cell research: A cross-national analysis of political representation of science between the UK and South Korea. Journal of Science Communication, 10(3), 1–16.Google Scholar
  40. Kuhn, T. S. (1970). The structure of scientific revolutions. London: Chicago.Google Scholar
  41. Lazer, D., Kennedy, R., King, G., & Vespignani, V. (2014). The parable of Google Flu: Traps in big data analysis. Science, 343(14), 1203–1205.CrossRefGoogle Scholar
  42. Lee, S. (2008). Understand the nature of citation: Examination of structure in citation analysis and its application to Communication discipline in the information age. Doctoral dissertation. The State University of New York at Buffalo. Available from ProQuest Dissertation and Theses database. (UMI No. 3307596).Google Scholar
  43. Lee, S., & Barnett, G. A. (2006). The structural change in communication between 1991 and 2005: A social and semantic network analysis of the International Communication Association. Dresden: Paper presented at the annual convention of the International Communication Association.Google Scholar
  44. Lee, S., Choi, J. H., & Kim, H.-W. (2010a). Semantic network analysis on the MIS research keywords: APJIS and MIS Quarterly 2005–2009. Asian Pacific Journal of Information Systems, 20(4), 25–51.MathSciNetGoogle Scholar
  45. Lee, S. H., Kim, P. J., Ahn, Y. Y., & Jeong, H. (2010b). Googling social interactions: Web search engine based social network construction. PLoS One, 5(7), e11233. doi: 10.1371/journal.pone.0011233.CrossRefGoogle Scholar
  46. Lee, S., Kim, J. H., & Rosen, D. (2009). A semantic network and categorical content analysis of Internet and online media. The Open Communication Journal, 3, 15–28.CrossRefGoogle Scholar
  47. Leydesdorff, L. (1998). Theories of citation. Scientometrics, 43, 5–25.CrossRefGoogle Scholar
  48. Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinary of scientific journals. Journal of the American Society for Information Science, 58(9), 1303–1319.CrossRefGoogle Scholar
  49. Lievrouw, L. A., Rogers, E. M., Lowe, C. H., & Nadel, E. (1987). Triangulation as a research strategy for identifying invisible colleges among biomedical scientists. Social Network, 9, 217–248.CrossRefGoogle Scholar
  50. Littlejohn, S. W., & Foss, K. A. (2009). Encyclopedia of communication theory. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  51. Littlejohn, S. W., & Foss, K. A. (2010). Theory of human communication. CA, USA: Thomson Higher Education.Google Scholar
  52. Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41(6), 1462–1480.CrossRefGoogle Scholar
  53. Marsden, P. V. (2008). Network data and measurement. London: Sage.Google Scholar
  54. McPhee, R. D., & Zaug, P. (2001). Organizational theory, organizational communication, organizational knowledge, and problematic integration. Journal of Communication, 51(3), 574–591.CrossRefGoogle Scholar
  55. McQuail, D. (2010). McQuail’s mass communication theory. London, UK: Sage Publication Ltd.Google Scholar
  56. Morris, M., & Ogan, C. (1996). The Internet as mass medium. Journal of Communication, 46(1), 39–50.CrossRefGoogle Scholar
  57. Olson, D. R., Konty, K. J., Paladini, M., Viboud, C., & Simonsen, L. (2013). Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: A comparative epidemiological study at three geographic scales. PLoS Computational Biology, 9(10), e1003256.CrossRefGoogle Scholar
  58. Park, H. W. (2010). Mapping the e-science landscape in South Korea using the webometrics method. Journal of Computer-Mediated Communication, 15, 211–229.CrossRefGoogle Scholar
  59. Park, H. W. (Ed.). (2011). Introduction to internet social media: Theories and cases. Gyeongsan: Yeungnam University Press. (Korean).Google Scholar
  60. Park, H. W. (2014). Mapping election campaigns through negative entropy: Triple and Quadruple Helix approach to South Korea’s 2012 presidential election. Scientometrics, 99(1), 187–197.CrossRefGoogle Scholar
  61. Park, H. W., & Leydesdorff, L. (2009). Knowledge linkage structure in communication studies using citation analysis among communication journals. Scientometrics, 81(1), 157–175.CrossRefGoogle Scholar
  62. Reardon, K. K., & Rogers, E. M. (1988). Interpersonal versus mass media communication: A false dichotomy. Human Communication Research, 15(2), 284–303.CrossRefGoogle Scholar
  63. Redding, W. C., & Tompkins, P. K. (1988). Organizational communication: Past and present tenses. In G. M. Goldhaber & G. A. Barnett (Eds.), Handbook of organizational communication (pp. 5–33). Norwood, NJ: Ablex.Google Scholar
  64. Rogers, C. R., & Chaffee, S. (1988). Bridging the communication gap. Human Communication Research, 15(2), 311–318.CrossRefGoogle Scholar
  65. Roloff, M. E (1981). Interpersonal communication. In Oxford bibliographies. Retrieved July 30, 2014, from http://www.oxfordbibliographies.com/view/document/obo-9780199756841/obo-9780199756841-0001.xml
  66. Scholl, H. J. (2006). Is E-government research a flash in the pan or here for the long short? Electronic Government (pp. 13–24). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  67. Smith, M. A. (2015). Catalyzing social media scholarship with open tools and data. Journal of Contemporary Eastern Asia, 14(2)Google Scholar
  68. Smith, M. A., Milic-Frayling, N., Shneiderman, B., Rodrigues, E. M., & Leskovec, J. (2010). NodeXL: A free and open network overview, discovery and exploration add-in for Excel 2007/2010. Belmont: Social Media Research Foundation.Google Scholar
  69. Tai, Z. (2009). The structure of knowledge and dynamics of scholarly communication in agenda setting research, 1996–2005. Journal of Communication, 59(2), 481–513.CrossRefGoogle Scholar
  70. Thelwall, M. (2008). Bibliometircs to webometrics. Journal of Information Science, 34(8), 605–621.CrossRefGoogle Scholar
  71. Thelwall, M. (2009). Introduction to webometircs. New York: Morgan & Claypool.Google Scholar
  72. Treadwell, D. F. (2006). Situating communication studies: A study in academic boundaries. Journal of Human Subjectivity, 4(2), 95–116.Google Scholar
  73. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  74. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. New York: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  75. Wiener, N. (1948). Cybernetics, or control and communication in the animal and machine. New York: Wiley.Google Scholar
  76. Wiener, N. (1950). The human use of human being: Cybernetics and society. Boston: Houghton Mifflin.Google Scholar
  77. Xu, W. W., & Feng, M. (2015). Networked creativity on the censored web 2.0: Chinese users’ Twitter-based activities on the issue of internet censorship. Journal of Contemporary Eastern Asia, 14(1), 23–43.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Gohar Feroz Khan
    • 1
  • Sungjoon Lee
    • 2
  • Ji Young Park
    • 3
  • Han Woo Park
    • 4
  1. 1.Department of Business AdministrationKeimyung UniversityDaeguSouth Korea
  2. 2.Department of Journalism and Communication StudiesCheongju UniversityCheongjuSouth Korea
  3. 3.Interdisciplinary Program of East Asia Cultural Studies, Cyber Emotions Research InstituteYeungNam UniversityGyeong-sanSouth Korea
  4. 4.Interdisciplinary Program of East Asian Cultural Studies, Interdisciplinary Program of Digital Convergence Business, Cyber Emotions Research InstituteYeungNam UniversityGyeong-sanSouth SKorea

Personalised recommendations