, Volume 106, Issue 3, pp 1151–1166 | Cite as

Quantifying the evolution of a scientific topic: reaction of the academic community to the Chornobyl disaster

  • O. Mryglod
  • Yu. Holovatch
  • R. Kenna
  • B. Berche


We analyze the reaction of academic communities to a particular urgent topic which abruptly arises as a scientific problem. To this end, we have chosen the disaster that occurred in 1986 in Chornobyl (Chernobyl), Ukraine, considered as one of the most devastating nuclear power plant accidents in history. The academic response is evaluated using scientific-publication data concerning the disaster using the Scopus database to present the picture on an international scale and the bibliographic database “Ukrainika naukova” to consider it on a national level. We measured distributions of papers in different scientific fields, their growth rates and properties of co-authorship networks. Elements of descriptive statistics and tools of complex network theory are used to highlight the interdisciplinary as well as international effects. Our analysis allows comparison of contributions of the international community to Chornobyl-related research as well as integration of Ukraine in international research on this subject. Furthermore, the content analysis of titles and abstracts of the publications allowed detection of the most important terms used for description of Chornobyl-related problems.


Topic evolution Terms indentification Bibliometric analysis Authorship networks Interdisciplinarity Text mining Chornobyl disaster 



This work was supported by the 7th FP, IRSES projects No. 295302 “Statistical physics in diverse realizations”, No. 612707 “Dynamics of and in Complex Systems”, No. 612669 “Structure and Evolution of Complex Systems with Applications in Physics and Life Sciences” and by the COST Action TD1210 “Analyzing the dynamics of information and knowledge landscapes”. OM would like to thank to Nees Jan van Eck for a useful discussion and explaining some key features of the VOSviewer program.


  1. Akritidis, L., Katsaros, D., & Bozanis, P. (2012). Identifying attractive research fields for new scientists. Scientometrics, 91(3), 869–894.CrossRefGoogle Scholar
  2. Alexievich, S. (2015). Nobel Lecture in Literature. Accessed 6 Nov 2015.
  3. Alexievich, S., & Gessen, K. (2006). Voices from Chernobyl: The oral history of a nuclear disaster. London: Macmillan.Google Scholar
  4. Anick, P. G., & Tipirneni, S. (1999). The paraphrase search assistant: Terminological feedback for iterative information seeking. In Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval (pp. 153–159). ACM.Google Scholar
  5. Delanoe, A., & Galam, S. (2014). Modeling a controversy in the press: The case of abnormal bee deaths. Physica A: Statistical Mechanics and its Applications, 402, 93–103.CrossRefGoogle Scholar
  6. Kageura, K., & Umino, B. (1996). Methods of automatic term recognition: A review. Terminology, 3(2), 259–289.CrossRefGoogle Scholar
  7. Leydesdorff, L., Khan, G. F., & Bornmann, L. (2014). The generation of large networks from Web of Science data. El Profesional de la Información, 23, 589–593.CrossRefGoogle Scholar
  8. Magnone, E. (2012). An analysis for estimating the short-term effects of Japan’s triple disaster on progress in materials science. Journal of Informetrics, 6(2), 289–297.CrossRefGoogle Scholar
  9. Mryglod, O., & Holovatch, Yu. (2012). Reaction of the academic community to Chornobyl disaster: Analysis of publication topics dynamics. Herald of the National Academy of Sciences of Ukraine, 7, 59–69. (in Ukrainian).Google Scholar
  10. PACS. (2010). Physics and Astronomy Classification Scheme. Accessed 1 April 2015.
  11. Pazienza, M. T., Pennacchiotti, M., & Zanzotto, F. M. (2005). Terminology extraction: An analysis of linguistic and statistical approaches. In S. Sirmakessis (Ed.), Knowledge mining (pp. 255–279). Berlin: Springer.Google Scholar
  12. Pollack, J., & Adler, D. (2015). Emergent trends and passing fads in project management research: A scientometric analysis of changes in the field. International Journal of Project Management, 33(1), 236–248.CrossRefGoogle Scholar
  13. Ravikumar, S., Agrahari, A., & Singh, S. N. (2015). Mapping the intellectual structure of scientometrics: A co-word analysis of the journal Scientometrics (2005–2010). Scientometrics, 102(1), 929–955.CrossRefGoogle Scholar
  14. Rip, A. (1988). Mapping of science: Possibilities and limitations.Google Scholar
  15. Schmid, H. (1994, September). Probabilistic part-of-speech tagging using decision trees. In Proceedings of the international conference on new methods in language processing (Vol. 12, pp. 44–49).Google Scholar
  16. Schmid, H. (1995). Improvements in part-of-speech tagging with an application to German. In Proceedings of the ACL SIGDAT-Workshop.Google Scholar
  17. Schneider, J. W. (2005). Verification of bibliometric methods’ applicability for thesaurus construction. In ACM SIGIR Forum (Vol. 39, No. 1, pp. 63–64). ACM.Google Scholar
  18. Simon, H. A. (1955). On a class of skew distribution functions. Biometrika, 42, 425–440.CrossRefMathSciNetzbMATHGoogle Scholar
  19. TreeTagger (2015): A language independent part-of-speech tagger. Accessed 1 April 2015.
  20. Tseng, Y. H., Lin, Y. I., Lee, Y. Y., Hung, W. C., & Lee, C. H. (2009). A comparison of methods for detecting hot topics. Scientometrics, 81(1), 73–90.CrossRefGoogle Scholar
  21. UDC. (2015) Universal Decimal Classification. Accessed 1 April 2015.
  22. van Eck, N. J. (2011). Methodological advances in bibliometric mapping of science (No. EPS-2011-247-LIS). Erasmus Research Institute of Management (ERIM).Google Scholar
  23. van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. arXiv preprint arXiv:1109.2058.
  24. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  25. van Eck, N. J., Waltman, L., Noyons, E. C., & Buter, R. K. (2010). Automatic term identification for bibliometric mapping. Scientometrics, 82(3), 581–596.CrossRefGoogle Scholar
  26. Vlado, A. (2015). Pajek: Program for large network analysis. Accessed 1 April 2015.
  27. Waltman, L., & van Eck, N. J. (2013). A smart local moving algorithm for large-scale modularity-based community detection. The European Physical Journal B, 86(11), 1–14.CrossRefGoogle Scholar
  28. Weessies, K. (2007). The publishing dynamics of catastrophic events. Journal of the American Society for Information Science and Technology, 58(6), 856–861.CrossRefGoogle Scholar
  29. Yablokov, A. V., Nesterenko, V. B., & Nesterenko, A. V. (2010). 15. Consequences of the Chernobyl catastrophe for public health and the environment 23 years later. Chernobyl, 42, 318.Google Scholar
  30. Zipf, G. K. (1935). The psycho-biology of language. Oxford: Houghton, Mifflin.Google Scholar
  31. Zipf, G. K. (1949). Human behavior and the principle of least effort. Oxford: Addison-Wesley Press.Google Scholar
  32. Zuccala, A., & van Eck, N. J. (2011). Poverty research in a development policy context. Development Policy Review, 29(3), 311–330.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • O. Mryglod
    • 1
  • Yu. Holovatch
    • 1
  • R. Kenna
    • 2
  • B. Berche
    • 3
  1. 1.Institute for Condensed Matter Physics of the National Academy of Sciences of UkraineLvivUkraine
  2. 2.Applied Mathematics Research CentreCoventry UniversityCoventryEngland, UK
  3. 3.Statistical Physics Group, IJL, UMR CNRS 7198, Campus de NancyUniversité de LorraineVandœuvre lès Nancy CedexFrance

Personalised recommendations