, Volume 106, Issue 2, pp 563–581 | Cite as

Citation analysis and mapping of nanoscience and nanotechnology: identifying the scope and interdisciplinarity of research

  • Karmen Stopar
  • Damjana Drobne
  • Klemen Eler
  • Tomaz Bartol


Diversification and fragmentation of scientific exploration brings an increasing need for integration, for example through interdisciplinary research. The field of nanoscience and nanotechnology appears to exhibit strong interdisciplinary characteristics. Our objective was to explore the structure of the field and ascertain how different research areas within this field reflect interdisciplinarity through citation patterns. The complex relations between the citing and cited articles were examined through schematic visualization. Examination of WOS categories assigned to journals shows the scatter of nano studies across a wide range of research topics. We identified four distinctive groups of categories each showing some detectable shared characteristics. Three alternative measures of similarity were employed to delineate these groups. These distinct groups enabled us to assess interdisciplinarity within the groups and relationships between the groups. Some measurable levels of interdisciplinarity exist in all groups. However, one of the groups indicated that certain categories of both citing as well as cited articles aggregate mostly in the framework of physics, chemistry, and materials. This may suggest that the nanosciences show characteristics of a distinct discipline. The similarity in citing articles is most evident inside the respective groups, though, some subgroups within larger groups are also related to each other through the similarity of cited articles.


Nanoscience Interdisciplinarity Mapping of science Cross-citation network Subject categories 



This work was partially supported by the Slovenian Research Agency (ARRS) Research Programme P4-0085 (D).

Supplementary material

11192_2015_1797_MOESM1_ESM.pdf (19 kb)
Supplementary material 1 (PDF 19 kb)


  1. Adams, J., Jackson, L., & Marshal, S. (2007). Bibliometric analysis of interdisciplinary research. Report to the higher education funding council for England. Leeds: Evidence Ltd.Google Scholar
  2. Bartol, T., & Stopar, K. (2015). Nano language and distribution of article title terms according to power laws. Scientometrics, 103(2), 435–451.CrossRefGoogle Scholar
  3. Bassecoulard, E., Lelu, A., & Zitt, M. (2007). Mapping nanosciences by citation flows: A preliminary study. Scientometrics, 70(3), 859–880.CrossRefGoogle Scholar
  4. Batagelj, V., Mrvar, A. (2012). Pajek. Programs for large networks analysis. Accessed 25 June 2012.
  5. Bordons, M., Morillo, F., & Gómez, I. (2004). Analysis of cross-disciplinary research through bibliometric tools. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 437–456). Dordrecht: Kluwer.Google Scholar
  6. Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.CrossRefGoogle Scholar
  7. Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotechnology on the balance. Scientometrics, 38(2), 321–325.CrossRefGoogle Scholar
  8. Committee on Facilitating Interdisciplinary Research, & National Academy of Sciences. (2004). Facilitating Interdisciplinary Research. Washington, DC: National Academies Press.Google Scholar
  9. de Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek (2nd ed.). Cambridge: University Press.CrossRefGoogle Scholar
  10. Grieneisen, M. L., & Zhang, M. (2011). Nanoscience and nanotechnology: Evolving definitions and growing footprint on the scientific landscape. Small (Weinheim an der Bergstrasse, Germany), 7(20), 2836–2839.CrossRefGoogle Scholar
  11. Hill, M. O., & Gauch, H. G. (1980). Detrended correspondence analysis: An improved ordination technique. Vegetatio, 42(1–3), 47–58.CrossRefGoogle Scholar
  12. Igami, M. & Okazaki, T. (2007). Capturing nanotechnology’s current state of development via analysis of patents. STI Working paper 2007/4. Paris, OECD.Google Scholar
  13. Janssens, F., Zhang, L., De Moor, B., & Glänzel, W. (2009). Hybrid clustering for validation and improvement of subject-classification schemes. Information Processing and Management, 45(6), 683–702.CrossRefGoogle Scholar
  14. Klavans, R., & Boyack, K. W. (2006). Identifying a better measure of relatedness for mapping science. Journal of the American Society for Information Science and Technology, 57(2), 251–263.CrossRefGoogle Scholar
  15. Leydesdorff, L. (2008). The delineation of nanoscience and nanotechnology in terms of journals and patents: A most recent update. Scientometrics, 76(1), 159–167.CrossRefGoogle Scholar
  16. Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.CrossRefGoogle Scholar
  17. Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.CrossRefGoogle Scholar
  18. Leydesdorff, L., & Zhou, P. (2007). Nanotechnology as a field of science: Its delineation in terms of journals and patents. Scientometrics, 70(3), 693–713.CrossRefGoogle Scholar
  19. Maghrebi, M., Abbasi, A., Amiri, S., Monsefi, R., & Harati, A. (2011). A collective and abridged lexical query for delineation of nanotechnology publications. Scientometrics, 86, 15–25.CrossRefGoogle Scholar
  20. Meyer, M., & Persson, O. (1998). Nanotechnology—interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42(2), 195–205.CrossRefGoogle Scholar
  21. Mogoutov, A., & Kahane, B. (2007). Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. Research, 36, 893–903.Google Scholar
  22. Morillo, F., Bordons, M., & Gómez, I. (2001). An approach to interdisciplinarity through bibliometric indicators. Scientometrics, 51(1), 203–222.CrossRefGoogle Scholar
  23. Moya-Anegon, F., Vargas-Quesada, B., Herrero-Solana, V., Chinchilla-Rodríguez, Z., Corera-Álvarez, E., & Munoz-Fernández, F. J. (2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics, 61(1), 129–145.CrossRefGoogle Scholar
  24. Noyons, E. C. M. (2001). Bibliometric mapping of science in a science policy context. Scientometrics, 50(1), 83–98.CrossRefGoogle Scholar
  25. Noyons, E. C. M., Buter, R. K., van Raan, A. F .J., Schmoch, U., Heinze, T., Hinze, S. & Rangnow, R. (2003). Mapping excellence in science and technology across Europe: Nanoscience and Nanotechnology. Final report of project EC-PPN CT-2002-0001 to the European Commission. Leiden: Leiden University.Google Scholar
  26. Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., Minchin, P.R., & O’Hara et al. (2015). Package ‘vegan’. Accessed 12 January 2015.
  27. Persson, O. (2010). Bibexcel—a toolbox for bibliometricians. Inforsk, Umeå university. Accessed 11 June 2012.
  28. Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.CrossRefGoogle Scholar
  29. Porter, A. L., & Youtie, J. (2009). How interdisciplinary is nanotechnology? Journal of Nanoparticle Research, 11(5), 1023–1041.CrossRefGoogle Scholar
  30. Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.CrossRefGoogle Scholar
  31. R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Accessed 15 June 2012.
  32. Rafols, I., & Meyer, M. (2007). How cross-disciplinary is bionanotechnology? Explorations in the specialty of molecular motors. Scientometrics, 70(3), 633–650.CrossRefGoogle Scholar
  33. Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.CrossRefGoogle Scholar
  34. Rao, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 24–43.zbMATHMathSciNetCrossRefGoogle Scholar
  35. Roco, M. C. (2002). Coherence and divergence of megatrends in science and engineering. Journal of Nanoparticle Research, 4(1–2), 9–19.CrossRefGoogle Scholar
  36. Schummer, J. (2004). Multidisciplinarity, inetrdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425–465.CrossRefGoogle Scholar
  37. Stirling, A. (1994). Diversity and ignorance in electricity supply investment: Addressing the solution rather than the problem. Energy Policy, 22, 195–216.CrossRefGoogle Scholar
  38. Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Socety Interface, 4, 707–719.CrossRefGoogle Scholar
  39. Ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67(5), 1167–1179.CrossRefGoogle Scholar
  40. van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.CrossRefGoogle Scholar
  41. van Leeuwen, T., & Tijssen, R. (2000). Interdisciplinary dynamics of modern science: Analysis of cross-disciplinary citation flows. Research Evaluation, 9, 183–187.CrossRefGoogle Scholar
  42. Wagner, C. S., Roessner, J. D., Bobb, K., Thompson Klein, J., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 165, 14–26.CrossRefGoogle Scholar
  43. Warris, C. (2004). Nanotechnology benchmarking project. Canberra: Australian Academy of Science.Google Scholar
  44. Zhang, L., Liu, X., Janssens, F., Liang, L., & Glänzel, W. (2010). Subject clustering analysis base on ISI category classification. Journal of Informetrics, 4, 185–193.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Karmen Stopar
    • 1
  • Damjana Drobne
    • 1
  • Klemen Eler
    • 1
  • Tomaz Bartol
    • 1
  1. 1.Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations