, Volume 105, Issue 2, pp 1019–1030 | Cite as

Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context

  • J. Gómez-Verjan
  • I. Gonzalez-Sanchez
  • E. Estrella-Parra
  • R. Reyes-Chilpa


Tropical trees of Calophyllum genus (Calophyllaceae) have chemical and biological importance as potential source of secondary active metabolites which can lead to the development of new drugs. Research on this species has been rising since 1992 due to the discovering of anti-HIV properties of Calanolide A found in Calophyllum inophyllum leaves. This compound is the most important natural product for potential development of new anti-HIV drugs and phytomedicines. The scientometric analysis (1953–2014) here performed revealed that the most studied species of Calophyllum genus are: C. inophyllum and C. brasiliense, distributed in the Asian, and American continents, respectively. Current research on these species is carried out mainly in India and Brazil, respectively, where these species grow. Research on C. brasiliense is focused mainly on ecological, antiparasitic, cytotoxic properties, and isolation of new compounds. Chemical studies and biodiesel development are the main topics in the case of C. inophyllum. Text mining analysis revealed that coumarins, and xanthones are the main secondary active metabolites responsible for most of the reported pharmacological properties, and are potential compounds for the treatment of leukemia and against intracellular parasites causing American Trypanosomiasis and Leshmaniasis. On the other hand, C. inophyllum represents an important source for the development of 2nd generation biodiesel. Medicinal and industrial applications of these species may impulse sustainable forest plantations. To our knowledge this is the first scientometric and text mining analysis of chemical and biomedical research on Calophyllum genus, C. brasiliense and C. inophyllum.


C. brasiliense C. inophyllum Text mining Natural products Calophyllum spp. 



Reverse transcriptase


Human immunodeficiency virus type 1


Xanthine oxidase


Angiotensin converting enzyme


Platelet-activating factor


Sulfotransferase 1A1


Sulfotransferase 1A2

Mathematics Subject Classification

92-08 (Biology and other natural sciences—computational methods) 



Juan Carlos Gomez Verjan is grateful with Posgrado en Ciencias Biomédicas-UNAM and CONACyT for providing a scholarship number 220346. This work was submitted in fulfillment of the requirements to obtain PhD degree at Doctorado en Ciencias Biomédicas and Universidad Nacional Autónoma de México. This research was supported by Grant IG200513 from DGAPA-UNAM. I. Gonzalez-Sanchez was supported by a post-doctoral Grant (DGAPA-UNAM).


  1. Arumugam, A., Sandhya, M., & Ponnusami, V. (2014). Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Bioresource Technology, 164, 170–176.CrossRefGoogle Scholar
  2. Atabani, A. E., & César, A. D. S. (2014). Calophyllum inophyllum L.—A prospective non-edible biodiesel feedstock. study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renewable and Sustainable Energy Reviews, 37, 644–655.CrossRefGoogle Scholar
  3. Brenzan, M. A., Nakamura, C. V., Dias Filho, B. P., Ueda-Nakamura, T., Young, M. C. M., Côrrea, A. G., et al. (2008). Structure–activity relationship of (−) mammea A/BB derivatives against Leishmania amazonensis. Biomedicine & Pharmacotherapy, 62, 651–658.CrossRefGoogle Scholar
  4. Brenzan, M. A., Nakamura, C. Dias, Filho, B. P., Ueda-Nakamura, T., Young, M., & Cortez, D. A. G. (2007). Antileishmanial activity of crude extract and coumarin from Calophyllum brasiliense leaves against Leishmania amazonensis. Parasitology Research, 101, 715–722.CrossRefGoogle Scholar
  5. Brenzan, M. A., Santos, A. O., Nakamura, C. V., Filho, B. P. D., Ueda-Nakamura, T., Young, M. C. M., et al. (2012). Effects of (−) mammea A/BB Isolated from Calophyllum brasiliense leaves and derivatives on mitochondrial membrane of Leishmania amazonensis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 19, 223–230.CrossRefGoogle Scholar
  6. Butler, M. S. (2005). Natural products to drugs: natural product derived compounds in clinical trials. Natural Products Reports, 22, 162–195.CrossRefGoogle Scholar
  7. Butler, M. S., Robertson, A. A. B., & Cooper, M. A. (2014). Natural product and natural product derived drugs in clinical trials. Natural Products Reports, 31, 1612–1661.CrossRefGoogle Scholar
  8. César, G. Z. J., Alfonso, M. G. G., Marius, M. M., Elizabeth, E.-M., Ángel, C. B. M., Maira, H.-R., et al. (2011). Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico. Fitoterapia, 82, 1027–1034.CrossRefGoogle Scholar
  9. Creagh, T., Ruckle, J. L., Tolbert, D. T., Giltner, J., Eiznhamer, D. A., Dutta, B., et al. (2001). Safety and Pharmacokinetics of Single Doses of (+)-Calanolide A, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects. Antimicrobial Agents and Chemotherapy, 45, 1379–1386.CrossRefGoogle Scholar
  10. Cusack, D., & Montagnini, F. (2004). The role of native species plantations in recovery of understory woody diversity in degraded pasturelands of Costa Rica. Forest Ecology and Management, 188, 1–15.CrossRefGoogle Scholar
  11. Da Silva, K. L., dos Santos, A. R., Mattos, P. E., Yunes, R. A., Delle-Monache, F., & Cechinel-Filho, V. (2001). Chemical composition and analgesic activity of Calophyllum brasiliense leaves. Therapie, 56, 431–434.Google Scholar
  12. Do Carmo Souza, M., Beserra, A. M. S., Martins, D. C., Real, V. V., dos Santos, R. A. N., Rao, V. S., et al. (2009). In vitro and in vivo anti-helicobacter pylori activity of Calophyllum brasiliense Camb. Journal of Ethnopharmacology, 123, 452–458.CrossRefGoogle Scholar
  13. Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB Journal, 22, 338–342.CrossRefGoogle Scholar
  14. Filho, V., Meyre-Silva, C., & Niero, R. (2009). Chemical and pharmacological aspects of the genus Calophyllum. Chemistry & Biodiversity, 6, 313–327.CrossRefGoogle Scholar
  15. Garcia-Barriga, H. (1992). Flora Medicinal de Colombia. Botanica Medica (Vol. 2). Bogota: Tercer Mundo Editores.Google Scholar
  16. Gomez-Verjan, J. C., Estrella-Parra, E. A., González-Sánchez, I., Vázquez-Martínez, E. R., Vergara-Castañeda, E., Cerbón, M. A., & Reyes-Chilpa, R. (2014). Molecular mechanisms involved in the cytotoxicity induced by coumarins from Calophyllum brasiliense in K562 leukaemia cells. Journal of Pharmacy and Pharmacology, 66, 1189–1195.Google Scholar
  17. Huerta-Reyes, M., Basualdo, M. D. C., Abe, F., Jimenez-Estrada, M., Soler, C., & Reyes-Chilpa, R. (2004). HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biological and Pharmaceutical Bulletin, 27, 1471–1475.CrossRefGoogle Scholar
  18. Isaias, D. E., Niero, R., Noldin, V. F., de Campos-Buzzi, F., Yunes, R. A., Delle-Monache, F., & Cechinel-Filho, V. (2004). Pharmacological and phytochemical investigations of different parts of Calophyllum brasiliense (Clusiaceae). Pharmazie, 59, 879–881.Google Scholar
  19. Ito, C., Murata, T., Itoigawa, M., Nakao, K., Kaneda, N., & Furukawa, H. (2006). Apoptosis inducing activity of 4-substituted coumarins from Calophyllum brasiliense in human leukaemia HL-60 cells. Journal of Pharmacy and Pharmacology, 58, 975–980.CrossRefGoogle Scholar
  20. Jantan, I., Juriyati, J., & Warif, N. A. (2001). Inhibitory effects of xanthones on platelet activating factor receptor binding in vitro. Journal of Ethnopharmacology, 75, 287–290.CrossRefGoogle Scholar
  21. Kashman, Y., Gustafson, K. R., Fuller, R. W., Cardellina, J. H., McMahon, J. B., Currens, M. J., et al. (1992). The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum Lanigerum. Journal of Medicinal Chemistry, 35, 2735–2743.CrossRefGoogle Scholar
  22. Kimura, S., Ito, C., Jyoko, N., Segawa, H., Kuroda, J., Okada, M., et al. (2005). Inhibition of Leukemic cell growth by a novel anti-cancer drug (GUT-70) from Calophyllum brasiliense that acts by induction of apoptosis. International Journal of Cancer, 113, 158–165.CrossRefGoogle Scholar
  23. Laure, F., Herbette, G., Faure, R., Bianchini, J. P., Raharivelomanana, P., & Fogliani, B. (2005). Structures of new secofriedelane and friedelane acids from Calophyllum inophyllum of French Polynesia. Magnetic Resonance in Chemistry, 43, 65–68.CrossRefGoogle Scholar
  24. Li, J., & Willett, P. (2010). Bibliometric analysis of chinese research on cyclization, MALDI-TOF and antibiotics. Journal of Chemical Information and Modeling, 50, 22–29.CrossRefGoogle Scholar
  25. Ong, H. C., Masjuki, H. H., Mahlia, T. M. I., Silitonga, A. S., Chong, W. T., & Leong, K. Y. (2014). Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Conversion and Management, 81, 30–40.CrossRefGoogle Scholar
  26. Patil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., et al. (1993). The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. Journal of Medicinal Chemistry, 36, 4131–4138.CrossRefGoogle Scholar
  27. Pires, C. T. A. T., Brenzan, M. A., Scodro, R. B. D. L., Cortez, D. A. G., Lopes, L. D. G., Siqueira, V. L. D., & Cardoso, R. F. F. (2014). Anti-mycobacterium tuberculosis activity and cytotoxicity of Calophyllum brasiliense Cambess (Clusiaceae). Memórias do Instituto Oswaldo Cruz, 109, 324–329.CrossRefGoogle Scholar
  28. Potti, G. R., & Kurup, P. A. (1970). Antibacterial principle of the root bark of Calophyllum inophyllum: Isolation and antibacterial activity. Indian Journal of Experimental Biology, 8, 39–40.Google Scholar
  29. Rafols, I., Hopkins, M. M., Hoekman, J., Siepel, J., O’Hare, A., Perianes-Rodríguez, A., & Nightingale, P. (2014). Big pharma, little science? Technological Forecasting and Social Change, 81, 22–38.CrossRefGoogle Scholar
  30. Reyes-Chilpa, R., Estrada-Muñiz, E., Apan, T. R. R., Amekraz, B., Aumelas, A., Jankowski, C. K., & Vázquez-Torres, M. (2004). Cytotoxic effects of mammea type coumarins from Calophyllum brasiliense. Life Sciences, 75, 1635–1647.CrossRefGoogle Scholar
  31. Reyes-Chilpa, R., Estrada-Muñiz, E., Vega-Avila, E., Abe, F., Kinjo, J., & Hernández-Ortega, S. (2008). Trypanocidal constituents in plants: 7. Mammea-type coumarins. Memórias do Instituto Oswaldo Cruz, 103(5), 431–436.CrossRefGoogle Scholar
  32. Rizwanul Fattah, I. M., Masjuki, H. H., Kalam, M. A., Wakil, M. A., Ashraful, A. M., & Shahir, S. A. (2014). Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors. Energy Conversion and Management, 83, 232–240.CrossRefGoogle Scholar
  33. Saklani, A., & Kutty, S. K. (2008). Plant-derived compounds in clinical trials. Drug Discovery Today, 13, 161–171.CrossRefGoogle Scholar
  34. Sanjid, A., Masjuki, H. H., Kalam, M. A., Rahman, S. M. A., Abedin, M. J., & Palash, S. M. (2013). Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine. Renewable and Sustainable Energy Reviews, 27, 664–682.CrossRefGoogle Scholar
  35. Smalheiser, N. R., Torvik, V. I., & Zhou, W. (2009). Arrowsmith two-node search interface: A tutorial on finding meaningful links between two disparate sets of articles in MEDLINE. Computer Methods and Programs in Biomedicine, 94, 190–197.CrossRefGoogle Scholar
  36. Stevens, P. F. (1980). A revision of the old world species of Calophyllum (Guttiferae). Journal of Arnold Arboretum, 61, 117–699.CrossRefGoogle Scholar
  37. Su, X.-H. H., Zhang, M.-L. L., Li, L.-G. G., Huo, C.-H. H., Gu, Y.-C. C., & Shi, Q.-W. W. (2008). Chemical constituents of the plants of the genus Calophyllum. Chemistry & Biodiversity, 5, 2579–2608.CrossRefGoogle Scholar
  38. Tapia Tapia, E. C., & Reyes Chilpa, R. (2008). Productos Forestales No Maderables En México : Aspectos Económicos Para El Desarrollo Sustentable Mexican non-wood forest products: Economic aspects for sustainable development. Maderas y Bosques, 14, 95–112.Google Scholar
  39. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538.Google Scholar
  40. Venkanna, B. K., & Reddy, C. V. (2009). Biodiesel production and optimization from Calophyllum inophyllum linn oil (honne oil)—A three stage method. Bioresource Technology, 100, 5122–5125.CrossRefGoogle Scholar
  41. Xu, Z.-Q., Barrow, W. W., Suling, W. J., Westbrook, L., Barrow, E., Lin, Y.-M., & Flavin, M. T. (2004). Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry, 12, 1199–1207.CrossRefGoogle Scholar
  42. Zavaleta-Mancera, H., Reyes-Chilpa, R., & García-Zebadua, J. (2011). Leaf structure of two chemotypes of Calophyllum brasiliense from Mexico. Microscopy and Microanalysis, 17, 340–341.CrossRefGoogle Scholar
  43. Zhu, X.-F., Hao, J.-F., & Xin, L. (2013). Scientific publications in obstetrics and gynecology journals from China, 2000–2009. International Journal of Gynaecology and Obstetrics, 123, 96–100.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • J. Gómez-Verjan
    • 1
  • I. Gonzalez-Sanchez
    • 1
  • E. Estrella-Parra
    • 1
  • R. Reyes-Chilpa
    • 1
  1. 1.Departamento de Productos Naturales, Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations