, Volume 105, Issue 2, pp 743–758 | Cite as

Research trends and hotspots in soil erosion from 1932 to 2013: a literature review

  • Yanhua Zhuang
  • Chao Du
  • Liang Zhang
  • Yun Du
  • Sisi Li


According to the publications related to soil erosion in the SCI database from 1932 to 2013, this study reveals scientific outputs, main subject categories, geographical distribution, and research hotspots in soil erosion studies, which may be considered a potential guide for future research. The annual number of publications showed an increasing trend over the past 80 years, with an especially rapid increase after 1990. Agriculture, environmental sciences and ecology, geology, and water resources were four major categories. Interdisciplinary research in soil erosion is becoming more common. The soil erosion research was mainly distributed across the USA and Europe before 2001 and boomed in China and Australia after 2001. USA was the largest contributor to global soil erosion research. China is focusing increasing attention on soil erosion research in the last decade, behind the USA. The Chinese Academy of Sciences is the most productive institute, followed by USDA Agricultural Research Service and Katholieke Universiteit Leuven. A keyword analysis confirmed keen interest in sediment yield, soil organic carbon, and phosphorus; indicated that rainfall runoff, climate change, agricultural tillage, and land use change were the leading causes of soil erosion; revealed the important role of GIS, remote sensing, model, and Cs-137 measurement; and found that the Loess Plateau of north-central China was an area of research focus. Through co-citation analysis, soil erosion research mainly focuses on three aspects: soil erosion simulation based on models, soil erosion estimation based on Cs-137 technique, and effects of soil erosion on the environment and agriculture.


Soil erosion GIS Model Cs-137 Bibliometrics 



This study is funded by the Youth Chenguang Project of Science and Technology of Wuhan City (No. 2014070404010228), the National Natural Science Foundation of China (Nos. 51409240 and 41471433), and the Natural Science Foundation of Hubei Province (2014CFB458).


  1. Angima, S. D., Stott, D. E., O’Neill, M. K., Ong, C. K., & Weesies, G. A. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems & Environment, 97(1–3), 295–308.CrossRefGoogle Scholar
  2. Chen, C. M. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences of the United States of America, 101, 5303–5310.CrossRefGoogle Scholar
  3. Cheng, S. L., Fang, H. J., Zhu, T. H., Zheng, J. J., Yang, X. M., Zhang, X. P., et al. (2010). Effects of soil erosion and deposition on soil organic carbon dynamics at a sloping field in Black Soil region, Northeast China. Soil Science and Plant Nutrition, 56(4), 521–529.CrossRefGoogle Scholar
  4. Dang, Y. A., Ren, W., Tao, B., Chen, G. S., Lu, C. Q., Yang, J., et al. (2014). Climate and land use controls on soil organic carbon in the Loess Plateau Region of China. Plos One, 9(5), e95548.Google Scholar
  5. de Jong, S. M., Paracchini, M. L., Bertolo, F., Folving, S., Megier, J., & de Roo, A. P. J. (1999). Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena, 37(3–4), 291–308.CrossRefGoogle Scholar
  6. DeLong, C., Cruse, R., & Wiener, J. (2015). The soil degradation paradox: Compromising our resources when we need them the most. Sustainability, 7(1), 866–879.CrossRefGoogle Scholar
  7. DeRoo, A. P. J., Wesseling, C. G., & Ritsema, C. J. (1996). LISEM: A single-event physically based hydrological and soil erosion model for drainage basins. 1. Theory, input and output. Hydrological Processes, 10(8), 1107–1117.CrossRefGoogle Scholar
  8. Duley, F. L., & Hays, O. E. (1932). The effect of the degree of slope on run-off and soil erosion. Journal of Agricultural Research, 45, 0349–0360.Google Scholar
  9. Edwards, W. M., & Owens, L. B. (1991). Large storm effects on total soil-erosion. Journal of Soil and Water Conservation, 46(1), 75–78.Google Scholar
  10. Even, A. G., Occhietti, S., & Fechner, K. (2014). Main phases of soil genesis, erosion and anthropisation during the second half of the holocene in Lorraine (Eastern France). Archeosciences-Revue D Archeometrie, 38, 7–29.Google Scholar
  11. Fu, J. Y., Zhang, X., Zhao, Y. H., Chen, D. Z., & Huang, M. H. (2012). Global performance of traditional Chinese medicine over three decades. Scientometrics, 90(3), 945–958.CrossRefGoogle Scholar
  12. Gao, X. F., Xie, Y., Liu, G., Liu, B. Y., & Duan, X. W. (2015). Effects of soil erosion on soybean yield as estimated by simulating gradually eroded soil profiles. Soil & Tillage Research, 145, 126–134.CrossRefGoogle Scholar
  13. Genis, A., Vulfson, L., & Ben-Asher, J. (2013). Combating wind erosion of sandy soils and crop damage in the coastal deserts: Wind tunnel experiments. Aeolian Research, 9, 69–73.CrossRefGoogle Scholar
  14. Gharibreza, M., Raj, J. K., Yusoff, I., Othman, Z., Tahir, W., & Ashraf, M. A. (2013). Land use changes and soil redistribution estimation using Cs-137 in the tropical Bera Lake catchment, Malaysia. Soil & Tillage Research, 131, 1–10.CrossRefGoogle Scholar
  15. Kagabo, D. M., Stroosnijder, L., Visser, S. M., & Moore, D. (2013). Soil erosion, soil fertility and crop yield on slow-forming terraces in the highlands of Buberuka, Rwanda. Soil & Tillage Research, 128, 23–29.CrossRefGoogle Scholar
  16. Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12(6), 519–539.CrossRefGoogle Scholar
  17. Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450.CrossRefGoogle Scholar
  18. Le, M. H., Cordier, S., Lucas, C., & Cerdan, O. (2015). A faster numerical scheme for a coupled system modeling soil erosion and sediment transport. Water Resources Research, 51(2), 987–1005.CrossRefGoogle Scholar
  19. Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondonia, Brazilian Amazonia: Using RULSE, remote sensing and GIS. Land Degradation and Development, 15(5), 499–512.CrossRefGoogle Scholar
  20. Ma, L., Bu, Z. H., Wu, Y. H., Kerr, P. G., Garre, S., Xia, L. Z., et al. (2014). An integrated quantitative method to simultaneously monitor soil erosion and non-point source pollution in an intensive agricultural area. Pedosphere, 24(5), 674–682.CrossRefGoogle Scholar
  21. Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38(2), 109–129.CrossRefGoogle Scholar
  22. Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., et al. (1998). The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527–544.CrossRefGoogle Scholar
  23. Mullan, D. (2013). Soil erosion under the impacts of future climate change: Assessing the statistical significance of future changes and the potential on-site and off-site problems. Catena, 109, 234–246.CrossRefGoogle Scholar
  24. Nearing, M. A., Foster, G., Lane, L., & Finkner, S. (1989). A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the ASAE, 32(5), 1587–1593.CrossRefGoogle Scholar
  25. Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., et al. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 61(2–3), 131–154.CrossRefGoogle Scholar
  26. Nearing, M. A., Pruski, F. F., & O’Neal, M. R. (2004). Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation, 59(1), 43–50.Google Scholar
  27. Nederhof, A. J. (2006). Bibliometric monitoring of research performance in the social sciences and the humanities: A review. Scientometrics, 66(1), 81–100.MathSciNetCrossRefGoogle Scholar
  28. Nie, X. J., Zhao, T. Q., & Qiao, X. N. (2013). Impacts of soil erosion on organic carbon and nutrient dynamics in an alpine grassland soil. Soil Science and Plant Nutrition, 59(4), 660–668.CrossRefGoogle Scholar
  29. Pan, J. H., & Wen, Y. (2014). Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Natural Hazards, 71(3), 2187–2205.CrossRefGoogle Scholar
  30. Paroissien, J. B., Darboux, F., Couturier, A., Devillers, B., Mouillot, F., Raclot, D., et al. (2015). A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). Journal of Environmental Management, 150, 57–68.CrossRefGoogle Scholar
  31. Patel, A. (2012). Mountain erosion and mitigation: Global state of art. Environmental Earth Sciences, 66(6), 1631–1639.CrossRefGoogle Scholar
  32. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., et al. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123.CrossRefGoogle Scholar
  33. Pritchar, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348–349.Google Scholar
  34. Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: Revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.Google Scholar
  35. Ritchie, J. C., & McHenry, J. R. (1990). Application of radioactive fallout cesium-137 for measuring soil-erosion and sediment accumulation rates and patterns—A review. Journal of Environmental Quality, 19(2), 215–233.CrossRefGoogle Scholar
  36. Ritchie, J. C., Spraberr, J. A., & McHenry, J. R. (1974). Estimating soil erosion from redistribution of fallout Cs-137. Soil Science Society of America Journal, 38(1), 137–139.CrossRefGoogle Scholar
  37. Schmoch, U., & Schubert, T. (2008). Are international co-publications an indicator for quality of scientific research? Scientometrics, 74(3), 361–377.CrossRefGoogle Scholar
  38. Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W., & Chow, T. L. (2004). Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena, 55(1), 33–48.CrossRefGoogle Scholar
  39. Tang, Q., Xu, Y., Bennett, S. J., & Li, Y. (2015). Assessment of soil erosion using RUSLE and GIS: A case study of the Yangou watershed in the Loess Plateau, China. Environmental Earth Sciences, 73(4), 1715–1724.CrossRefGoogle Scholar
  40. Walling, D. E., & He, Q. (1999). Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality, 28(2), 611–622.CrossRefGoogle Scholar
  41. Wang, B., Zhang, G. H., Shi, Y. Y., & Zhang, X. C. (2014). Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena, 116, 51–59.CrossRefGoogle Scholar
  42. Wickama, J., Masselink, R., & Sterk, G. (2015). The effectiveness of soil conservation measures at a landscape scale in the West Usambara highlands, Tanzania. Geoderma, 241, 168–179.CrossRefGoogle Scholar
  43. Wischmeier, W. H. (1976). Use and misuse of the universal soil loss equation. Journal of Soil and Water Conservation, 31(1), 5–9.Google Scholar
  44. Xiao, L. L., Yang, X. H., Chen, S. X., & Cai, H. Y. (2015). An assessment of erosivity distribution and its influence on the effectiveness of land use conversion for reducing soil erosion in Jiangxi, China. Catena, 125, 50–60.CrossRefGoogle Scholar
  45. Xu, Y. Q., Peng, J., & Shao, X. M. (2014). Assessment of soil erosion using RUSLE and GIS: A case study of the Maotiao River watershed, Guizhou Province, China (Retraction of vol 56, pg 1643, 2009). Environmental Earth Sciences, 72(6), 2217.CrossRefGoogle Scholar
  46. Xu, L. F., Xu, X. G., & Meng, X. W. (2013). Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with Information Diffusion Model: A case study of Bohai Rim, China. Catena, 100, 74–82.CrossRefGoogle Scholar
  47. Yang, D. W., Kanae, S., Oki, T., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17(14), 2913–2928.CrossRefGoogle Scholar
  48. Yang, Y., Wu, M. Z., & Cui, L. (2012). Integration of three visualization methods based on co-word analysis. Scientometrics, 90(2), 659–673.CrossRefGoogle Scholar
  49. Zhang, L., Wang, M. H., Hu, J., & Ho, Y. S. (2010). A review of published wetland research, 1991–2008: Ecological engineering and ecosystem restoration. Ecological Engineering, 36(8), 973–980.CrossRefGoogle Scholar
  50. Zhao, L. M., & Zhang, Q. P. (2011). Mapping knowledge domains of Chinese digital library research output, 1994–2010. Scientometrics, 89(1), 51–87.CrossRefGoogle Scholar
  51. Zhuang, Y. H., Liu, X. J., Nguyen, T., He, Q. Q., & Hong, S. (2013). Global remote sensing research trends during 1991–2010: A bibliometric analysis. Scientometrics, 96(1), 203–219.CrossRefGoogle Scholar
  52. Zhuang, F., Wang, Z., & Yang, Q. (2008). The retrospection and prospect on soil erosion research in China. Chinese Journal of Nature, 30(1), 12–16.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Yanhua Zhuang
    • 1
    • 2
  • Chao Du
    • 1
  • Liang Zhang
    • 1
    • 2
  • Yun Du
    • 1
    • 2
  • Sisi Li
    • 1
  1. 1.Key Laboratory of Environment and Disaster Monitoring and Evaluation of Hubei, Institute of Geodesy and GeophysicChinese Academy of SciencesWuhanChina
  2. 2.Collaborative Innovation Center for Geo-hazards and Eco-environment in Three Gorges AreaYichangChina

Personalised recommendations