, Volume 105, Issue 1, pp 279–294 | Cite as

Opportunities and challenges of interbasin water transfers: a literature review with bibliometric analysis

  • Liang ZhangEmail author
  • Sisi Li
  • Hugo A. Loáiciga
  • Yanhua Zhuang
  • Yun Du


Interbasin water transfers and diversions are among the most controversial water-resources-planning topics worldwide. They provide supply alternatives to receiving basins and potential challenges to the donor basins within a context of changing global water problems. This study presents a bibliometric analysis of global interbasin water transfer research between 1900 and 2014. The bibliometric analysis analyzes general characteristics of publications, the national, institutional, and personal research outputs, participating regions and their research activity, and global trends and hot issues in the field of water transfers. Our results show that the rate of annual publication of interbasin water transfer research grew steadily after 1972 and is rising quickly at present. The United States produced the largest number of single-country publications (37.4 %) and international collaborative publications (46.6 %). However, China had a high growth rate of publications after 2001, and surpassed the United States and ranked 1st in 2012, with the Chinese Academy of Sciences playing a leading role in the emergence of China’s research output. The global geographic distribution of publication activity shows that an increasing number of countries, agencies, and scholars have become part of the research enterprise. There is ample opportunity for cooperation between them to be strengthened in the future. The results of keyword evolution generally indicate that the research on interbasin water transfers expanded from 1991 through 2014. The hydrological and eco-environmental impacts of the South-to-North Water Transfer/Diversion Project in China and the corresponding long-term monitoring and conservation strategy have become one of the top topics of attention.


Bibliometrics South-to-North Water Transfer Project (SNWTP) Climate change Water quality China 



The authors thank the support by the National Natural Science Foundation of China (Grant 41471433), the National Key Technology R&D Program of China (Grant 2012BAC06B03), and the China Scholarship Council.


  1. Aeschbach-Hertig, W., & Gleeson, T. (2012). Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5(12), 853–861. doi: 10.1038/ngeo1617.CrossRefGoogle Scholar
  2. Aron, G., White, E. L., & Coelen, S. P. (1977). Feasibility of inter-basin water transfer. Water Resources Bulletin, 13(5), 1021–1034.CrossRefGoogle Scholar
  3. Bauer, S., Olson, J., Cockrill, A., van Hattem, M., Miller, L., Tauzer, M., et al. (2015). Impacts of surface water diversions for marijuana cultivation on aquatic habitat in four northwestern California watersheds. PLoS ONE, 10(3), 25. doi: 10.1371/journal.pone.0120016.CrossRefGoogle Scholar
  4. Bethune, S., & Chivell, E. (1985). Environmental aspects of the Eastern National Water Carrier. SWA Annual, 1985, 23–27.Google Scholar
  5. Biswas, A. K. (1983). Long-distance water transfer: A Chinese case study and international experiences. Dublin: Tycooly International Publishing Ltd.Google Scholar
  6. Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl 1), 5303–5310.CrossRefGoogle Scholar
  7. Chen, Z. S., Wang, H. M., & Qi, X. T. (2013a). Pricing and water resource allocation scheme for the South-to-North Water Diversion Project in China. Water Resources Management, 27(5), 1457–1472. doi: 10.1007/s11269-012-0248-1.CrossRefGoogle Scholar
  8. Chen, D., Webber, M., Finlayson, B., Barnett, J., Chen, Z. Y., & Wang, M. (2013b). The impact of water transfers from the lower Yangtze River on water security in Shanghai. Applied Geography, 45, 303–310. doi: 10.1016/j.apgeog.2013.09.025.CrossRefGoogle Scholar
  9. Chung, I., & Helweg, O. (1985). Modeling the California state water project. Journal of Water Resources Planning and Management-Asce, 111(1), 82–97.CrossRefGoogle Scholar
  10. Cole Sr, D. S., & Carver, W. B. (2011). Interbasin transfers of water.
  11. Comín, F. A., & Williams, W. D. (1994). Parched continents: Our common future. In R. Margalef (Ed.), Limnology now: A paradigm of planetary problems (pp. 473–527). Amsterdam: Elsevier Science.Google Scholar
  12. Cummings, R. G. (1974). Interbasin water transfers, a case study in Mexico. Baltimore: Johns Hopkins Press.Google Scholar
  13. Davies, B. R., Thoms, M., & Meador, M. (1992). An assessment of the ecological impacts of inter-basin water transfers, and their threats to river basin integrity and conservation. Aquatic Conservation-Marine and Freshwater Ecosystems, 2(4), 325–349. doi: 10.1002/aqc.3270020404.CrossRefGoogle Scholar
  14. Ellender, B. R., & Weyl, O. L. F. (2014). A review of current knowledge, risk and ecological impacts associated with non-native freshwater fish introductions in South Africa. Aquatic Invasions, 9(2), 117–132. doi: 10.3391/ai.2014.9.2.01.CrossRefGoogle Scholar
  15. Fisher, A. C. (1978). Some theoretical and measurement issues in economic assessment of interbasin water transfers. Water Supply & Management, 2(2), 137–145.Google Scholar
  16. Fu, H. Z., Wang, M. H., & Ho, Y. S. (2013). Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011. Science of the Total Environment, 443, 757–765. doi: 10.1016/j.scitotenv.2012.11.061.CrossRefGoogle Scholar
  17. Golubev, G. N., & Biswas, A. K. (1984). Large-scale water transfers: emerging environmental and social issues. International Journal of Water Resources Development, 2(2–3), 1–5.CrossRefGoogle Scholar
  18. Gu, W. Q., Shao, D. G., & Jiang, Y. F. (2012). Risk evaluation of water shortage in source area of middle route project for South-to-North Water Transfer in China. Water Resources Management, 26(12), 3479–3493. doi: 10.1007/s11269-012-0086-1.CrossRefGoogle Scholar
  19. Ho, Y. S. (2008). Bibliometric analysis of biosorption technology in water treatment research from 1991 to 2004. International Journal of Environment and Pollution, 34(1–4), 1–13. doi: 10.1504/ijep.2008.020778.CrossRefGoogle Scholar
  20. Hudson, W. (1962). Snowy mountains scheme, Australia. Nature, 195(4836), 11. doi: 10.1038/195011a0.CrossRefGoogle Scholar
  21. Jia, X. L., Li, C. H., Jia, J. X., & Xu, M. (2013). Water price variation analyses & policy suggestions on typical water intake areas in the South–North Water Transfer Project, China. In Proceedings of the 35th Iahr world congress, Vols I and Ii, pp. 865–872.Google Scholar
  22. Khan, M. A., Vangani, N. S., Singh, N., & Singh, S. (1999). Environmental impact of Indira Gandhi Canal Project in Rawatsar tehsil of Hanumangarh district. Rajasthan. Annals of Arid Zone, 38(2), 137–144.Google Scholar
  23. Kingsford, R. T. (2000). Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology, 25(2), 109–127. doi: 10.1111/j.1442-9993.2000.tb00012.x.CrossRefGoogle Scholar
  24. Kingsford, R. T., Boulton, A. J., & Puckridge, J. T. (1998). Challenges in managing dryland rivers crossing political boundaries: Lessons from Cooper Creek and the Paroo River, central Australia. Aquatic Conservation-Marine and Freshwater Ecosystems, 8(3), 361–378. doi: 10.1002/(sici)1099-0755(199805/06)8:3<361:aid-aqc294>;2-v.CrossRefGoogle Scholar
  25. Kundell, J. E. (1988). Interbasin water transfers in Riparian states—A case-study of georgia. Water Resources Bulletin, 24(1), 87–94.CrossRefGoogle Scholar
  26. Li, S. Y., Cheng, X. L., Xu, Z. F., Han, H. Y., & Zhang, Q. F. (2009). Spatial and temporal patterns of the water quality in the Danjiangkou Reservoir, China. Hydrological Sciences Journal–Journal Des Sciences Hydrologiques, 54(1), 124–134. doi: 10.1623/hysj.54.1.124.CrossRefGoogle Scholar
  27. Li, S. Y., Xu, Z. F., Cheng, X. L., & Zhang, Q. F. (2008). Dissolved trace elements and heavy metals in the Danjiangkou Reservoir, China. Environmental Geology, 55(5), 977–983. doi: 10.1007/s00254-007-1047-5.CrossRefGoogle Scholar
  28. Li, L. C., Zhang, L. P., Xia, J., Gippel, C. J., Wang, R. C., & Zeng, S. D. (2015). Implications of modelled climate and land cover changes on runoff in the middle route of the South to North Water Transfer Project in China. Water Resources Management, 29(8), 2563–2579. doi: 10.1007/s11269-015-0957-3.CrossRefGoogle Scholar
  29. Li, S. S., Zhuang, Y. H., Zhang, L., Du, Y., & Liu, H. B. (2014). Worldwide performance and trends in nonpoint source pollution modeling research from 1994 to 2013: A review based on bibliometrics. Journal of Soil and Water Conservation, 69(4), 121A–126A. doi: 10.2489/jswc.69.4.121A.CrossRefGoogle Scholar
  30. Liang, Y. S., Wang, W., Li, H. J., Shen, X. H., Xu, Y. L., & Dai, J. R. (2012). The South-to-North Water Diversion Project: Effect of the water diversion pattern on transmission of Oncomelania hupensis, the intermediate host of Schistosoma japonicum in China. Parasites & Vectors, 5, 6. doi: 10.1186/1756-3305-5-52.CrossRefGoogle Scholar
  31. Lindenmayer, R. B., Hansen, N. C., Brummer, J., & Pritchett, J. G. (2011). Deficit irrigation of alfalfa for water-savings in the Great Plains and intermountain west: A review and analysis of the literature. Agronomy Journal, 103(1), 45–50. doi: 10.2134/agronj2010.0224.CrossRefGoogle Scholar
  32. Lindsey, C. C. (1957). Possible effects of water diversions on fish distribution in British-Columbia. Journal of the Fisheries Research Board of Canada, 14(4), 651–668.CrossRefGoogle Scholar
  33. Liu, C. M., & Ma, L. J. C. (1983). Interbasin water transfer in China. Geographical Review, 73(3), 253–270. doi: 10.2307/214833.CrossRefGoogle Scholar
  34. Liu, Y. S., Yan, F. Z., He, Y. H., & Gao, Y. P. (2006). The construction management of South-to-North Water Diversion Project of China. In Proceedings of CRIOCM 2006 international research symposium on advancement of construction management and real estate (Vols. 1 and 2). Kowloon: Hong Kong Polytechnic Univ.Google Scholar
  35. Liu, C. M., & Zheng, H. X. (2002). South-to-north water transfer schemes for China. International Journal of Water Resources Development, 18(3), 453–471. doi: 10.1080/0790062022000006934.CrossRefGoogle Scholar
  36. Loáiciga, H. A. (2009). Long-term climatic change and sustainable ground water resources management. Environmental Research Letters, 4(3), 035004.CrossRefGoogle Scholar
  37. Loáiciga, H. A. (2015). Managing municipal water supply and use in water-starved regions: Looking ahead. Journal of Water Resources Planning and Management, 141(1), 4. doi: 10.1061/(asce)wr.1943-5452.0000487.CrossRefGoogle Scholar
  38. Loáiciga, H. A., Maidment, D. R., & Valdes, J. B. (2000). Climate-change impacts in a regional karst aquifer, Texas, USA. Journal of Hydrology, 227(1–4), 173–194. doi: 10.1016/s0022-1694(99)00179-1.CrossRefGoogle Scholar
  39. Micklin, P. P. (1978). Environmental-factors in soviet inter-basin water transfer policy. Environmental Management, 2(6), 567–580. doi: 10.1007/bf01866715.CrossRefGoogle Scholar
  40. Moncur, J. E. T. (1972). Opportunity costs of a transbasin diversion of water. 1. Methodology. Water Resources Research, 8(6), 1415–1422. doi: 10.1029/WR008i006p01415.CrossRefGoogle Scholar
  41. Niu, B. B., Loáiciga, H. A., Wang, Z., Zhan, F. B., & Hong, S. (2014). Twenty years of global groundwater research: A Science Citation Index Expanded-based bibliometric survey (1993–2012). Journal of Hydrology, 519, 966–975. doi: 10.1016/j.jhydrol.2014.07.064.CrossRefGoogle Scholar
  42. Poff, N. L., & Matthews, J. H. (2013). Environmental flows in the Anthropocence: Past progress and future prospects. Current Opinion in Environmental Sustainability, 5(6), 667–675. doi: 10.1016/j.cosust.2013.11.006.CrossRefGoogle Scholar
  43. Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation25(4), 348–349.MathSciNetGoogle Scholar
  44. Putty, M. R. Y., Thipperudrappa, N. M., & Chandramouli, P. N. (2014). Hydrological feasibility of gravity diversion of the west flowing Nethravathi in Karnataka. Journal of Earth System Science, 123(8), 1781–1792.CrossRefGoogle Scholar
  45. Qiu, H., & Chen, Y. F. (2009). Bibliometric analysis of biological invasions research during the period of 1991 to 2007. Scientometrics, 81(3), 601–610. doi: 10.1007/s11192-008-2207-4.CrossRefGoogle Scholar
  46. Rose, K. A., Huang, H. S., Justic, D., & de Mutsert, K. (2014). Simulating fish movement responses to and potential salinity stress from large-scale river diversions. Marine and Coastal Fisheries, 6(1), 43–61. doi: 10.1080/19425120.2013.866999.CrossRefGoogle Scholar
  47. Shang, Y. J., Wang, S. J., Yang, Z. F., Zhou, K. S., & Li, L. H. (2003). The cultural relics distribution characteristics along the canal line and appraisal of its influence by the Middle Route Project for Water Transferring from South to North China. Human and Ecological Risk Assessment, 9(1), 403–420. doi: 10.1080/713609872.CrossRefGoogle Scholar
  48. Shen, H. L., Cai, Q. H., & Zhang, M. (2015). Spatial gradient and seasonal variation of trophic status in a large water supply reservoir for the South-to-North Water Diversion Project. China. Journal of Freshwater Ecology, 30(2), 249–261. doi: 10.1080/02705060.2014.935748.CrossRefGoogle Scholar
  49. Stevens, J. B. (1972). Interbasin transfers of water—Howe, CW and Easter, KW. American Journal of Agricultural Economics, 54(1), 150–151. doi: 10.2307/1237761.CrossRefGoogle Scholar
  50. Sun, F., Yang, Z. S., & Huang, Z. F. (2014). Challenges and solutions of urban hydrology in Beijing. Water Resources Management, 28(11), 3377–3389. doi: 10.1007/s11269-014-0697-9.CrossRefGoogle Scholar
  51. Tang, C. H., Yi, Y. J., Yang, Z. F., & Cheng, X. (2014). Water pollution risk simulation and prediction in the main canal of the South-to-North Water Transfer Project. Journal of Hydrology, 519, 2111–2120. doi: 10.1016/j.jhydrol.2014.10.010.CrossRefGoogle Scholar
  52. Thomas, D. S. G. (1989). The nature of arid environments. In D. S. G. Thomas (Ed.), Arid zone geomorphology (pp. 1–10). London: Belhaven Press.Google Scholar
  53. Walker, K. F., Sheldon, F., & Puckridge, J. T. (1995). A perspective on dryland river ecosystems. Regulated Rivers-Research & Management, 11(1), 85–104. doi: 10.1002/rrr.3450110108.CrossRefGoogle Scholar
  54. Wang, W., Dai, J. R., Liang, Y. S., Huang, Y. X., & Coles, G. C. (2009). Impact of the South-to-North Water Diversion Project on the transmission of Schistosoma japonicum in China. Annals of Tropical Medicine and Parasitology, 103(1), 17–29. doi: 10.1179/136485909x384974.CrossRefGoogle Scholar
  55. Wang, Z. H., Li, Z., Cheng, X. J., & IEEE (2013). Remote sensing monitoring on chlorophyll-a in Danjiangkou reservoir based on the HJ-1 satellite image data. In 2013 Fifth international conference on measuring technology and mechatronics automation (ICMTMA 2013), pp. 848–853. doi: 10.1109/icmtma.2013.213.
  56. Wang, L. S., & Ma, C. (1999). A study on the environmental geology of the Middle Route Project of the South–North water transfer. Engineering Geology, 51(3), 153–165. doi: 10.1016/s0013-7952(98)00043-x.CrossRefGoogle Scholar
  57. Wang, Q. W., Sun, R. R., & Guo, W. P. (2013). Study on Three-Dimensional Visual Simulation for Inter-basin Water Transfer Project. In X. D. Zhang, H. N. Li, X. T. Feng, & Z. H. Chen (Eds.), Advances in civil engineering Ii, Pts 14 (Vol. 256–259, pp. 2523–2527, Applied Mechanics and Materials). Stafa-Zurich: Trans Tech Publications Ltd.Google Scholar
  58. Xie, P., Xu, B., & Xiao, C. (2011). Effects of the middle route of China’s South-to-North Water Transfer Project on water environment in the middle-downstream of Hanjiang River. In L. Ren, W. Wang, & F. Yuan (Eds.), Hydrological cycle and water resources sustainability in changing environments (Vol. 350, pp. 283–289, IAHS Publication). Wallingford: Int Assoc Hydrological Sciences.Google Scholar
  59. Xie, S. D., Zhang, J., & Ho, Y. S. (2008). Assessment of world aerosol research trends by bibliometric analysis. Scientometrics, 77(1), 113–130. doi: 10.1007/s11192-007-1928-0.CrossRefGoogle Scholar
  60. Xu, H. Z., Li, M., Li, G. M., Zhang, S. Q., Dong, Y. H., & Yang, Z. S. (2013). Impact of the South-to-North Water Diversion Project on groundwater resources: a case study in Pinggu basin, Beijing, China. Environmental Engineering and Management Journal, 12(11), 2239–2247.Google Scholar
  61. Yang, G. S., Huang, J. S., Li, J., & Yin, W. (2014). Study on Green Water Management in a typical watershed in water resource area of the mid-route of South-to-North Water Transfer. In H. Li, Q. Xu, & H. Ge (Eds.), Environmental engineering, Pts 14 (Vol. 864–867, pp. 2240–2248, Advanced Materials Research). Stafa-Zurich: Trans Tech Publications Ltd.Google Scholar
  62. Ye, A. Z., Duan, Q. Y., Chu, W., Xu, J., & Mao, Y. N. (2014). The impact of the South-North Water Transfer Project (CTP)’s central route on groundwater table in the Hai River basin. North China. Hydrological Processes, 28(23), 5755–5768. doi: 10.1002/hyp.10081.CrossRefGoogle Scholar
  63. Yevjevich, V. (2001). Water diversions and interbasin transfers. Water International, 26(3), 342–348.CrossRefGoogle Scholar
  64. Zhang, Q. F. (2009). The South-to-North Water Transfer Project of China: Environmental implications and monitoring strategy1. Journal of the American Water Resources Association, 45(5), 1238–1247. doi: 10.1111/j.1752-1688.2009.00357.x.CrossRefGoogle Scholar
  65. Zhang, L., Wang, M. H., Hu, J., & Ho, Y. S. (2010). A review of published wetland research, 1991–2008: Ecological engineering and ecosystem restoration. Ecological Engineering, 36(8), 973–980. doi: 10.1016/j.ecoleng.2010.04.029.CrossRefGoogle Scholar
  66. Zhong, D. H., Liu, J. M., Fu, J. Q., & Xiong, K. Z. (2005). Construction schedule simulation and its application to hydrojunctions of water diversion project based on 4D CAD. In System simulation and scientific computing, Vols 1 and 2, Proceedings. Hong Kong: International Academic Publishers Ltd.Google Scholar
  67. Zhuang, Y., Liu, X., Nguyen, T., He, Q., & Hong, S. (2013). Global remote sensing research trends during 1991–2010: A bibliometric analysis. Scientometrics, 96(1), 203–219.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Liang Zhang
    • 1
    Email author
  • Sisi Li
    • 1
  • Hugo A. Loáiciga
    • 2
  • Yanhua Zhuang
    • 1
  • Yun Du
    • 1
  1. 1.Key Laboratory of Environment and Disaster Monitoring and Evaluation of Hubei, Institute of Geodesy and GeophysicsChinese Academy of SciencesWuhanChina
  2. 2.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations