Advertisement

Scientometrics

, Volume 103, Issue 1, pp 135–158 | Cite as

Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis

  • Zhigao Liu
  • Yimei YinEmail author
  • Weidong Liu
  • Michael Dunford
Article

Abstract

Despite increasing awareness of the need to trace the trajectory of innovation system research, so far little attention has been given to quantitative depiction of the evolution of this fast-moving research field. This paper uses CiteSpace to demonstrate visually intellectual structures and developments. The study uses citation analysis to detect and visualize disciplinary distributions, keyword co-word networks and journal cocitation networks, highly cited references, as well as highly cited authors to identify intellectual turning points, pivotal points and emerging trends, in innovation systems system research from 1975 to 2012.

Keywords

Innovation systems Scientific visualization Cityscape Intellectual development Bibliometrics 

Notes

Acknowledgments

The authors gratefully acknowledge financial support from several sources: the National Natural Science Foundation of China (41201116, 41471113 and 41125005), Beijing Municipal Natural Science Foundation (9142007), Tourism Young Expert Training Program of China National Tourism Administration (TYETP201304), and a Chinese Academy of Sciences Visiting Professorship for Senior International Scientists Grant 2009S1-44.

References

  1. Aksnes, D. W. (2003). Characteristics of highly cited papers. Research Evaluation, 12(3), 159–170.CrossRefGoogle Scholar
  2. Aoki, M. (1988). Information, incentives, and bargaining in the Japanese economy. Cambridge: Cambridge University Press.Google Scholar
  3. Asheim, B. T., & Coenen, L. (2005). Knowledge bases and regional innovation systems: Comparing nordic clusters. Research Policy, 34(8), 1173–1190.Google Scholar
  4. Asheim, B., Coenen, L., & Vang, J. (2007). Face-to-face, buzz, and knowledge bases: Sociospatial implications for learning, innovation, and innovation policy. Environment and Planning C, 25(5), 655.CrossRefGoogle Scholar
  5. Asheim, B. T., & Isaksen, A. (1997). Location, agglomeration and innovation: Towards regional innovation systems in Norway? European Planning Studies, 5(3), 299–330.CrossRefGoogle Scholar
  6. Bailón-Moreno, R., Jurado-Alameda, E., Ruiz-Baños, R., & Courtial, J. P. (2005). Analysis of the field of physical chemistry of surfactants with the unified scienctometric model. Scientometrics, 63(2), 259–276.CrossRefGoogle Scholar
  7. Bathelt, H., Malmberg, A., & Maskell, P. (2004). Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography, 28(1), 31–56.Google Scholar
  8. Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, 37(3), 407–429.CrossRefGoogle Scholar
  9. Börner, K. (2010). Atlas of science: Visualizing what we know. Cambridge: MIT Press.Google Scholar
  10. Börner, K., et al. (2010). Rete-netzwerk-red: Analyzing and visualizing scholarly networks using the Network Workbench Tool. Scientometrics, 83(3), 863–876.CrossRefGoogle Scholar
  11. Boschma, R. A. (2005). Proximity and innovation: A critical assessment. Regional Studies, 39(1), 61–74.Google Scholar
  12. Bowonder, B., & Miyake, T. (1991). Industrial competitiveness: An analysis of the Japanese electronics industry. Science and Public Policy, 18(2), 93–110.Google Scholar
  13. Braam, R. R., Moed, H. F., & van Raan, A. F. J. (1991a). Mapping of science by combined co-citation and word analysis, I. Structural aspects. Journal of the American Society for Information Science, 422(4), 233–251.Google Scholar
  14. Braam, R. R., Moed, H. F., & van Raan, A. F. J. (1991b). Mapping of science by combined co-citation and word analysis, II: Dynamical aspects. Journal of the American Society for Information Science, 422(4), 252–264.CrossRefGoogle Scholar
  15. Braczyk, H. J., & Heidenreich, M. (1998). Regional governance structures in a globalized world. In H. J. Braczyk, P. Cooke & M. Heidenreich (Eds.), Regional innovation systems: The role of governance in a globalised world. London: UCL Press.Google Scholar
  16. Breschi, S., & Lissoni, F. (2001). Knowledge spillovers and local innovation systems: A critical survey. Industrial and Corporate Change, 10(4), 975–1005.CrossRefGoogle Scholar
  17. Brooks, H. (1975). The military innovation system and the qualitative arms race. Daedalus, 104(3), 75–97.Google Scholar
  18. Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scientometrics, 22(1), 155–205.CrossRefGoogle Scholar
  19. Carlsson, B., & Stankiewicz, R. (1991). On the nature, function and composition of technological systems. Journal of Evolutionary Economics, 1(2), 93–118.Google Scholar
  20. Carlsson, B. (1995). Technological systems and economic performance: The case of factory automation. Dordrecht: Kluwer.CrossRefGoogle Scholar
  21. Carlsson, B. (2006). Internationalization of innovation systems: A survey of the literature. Research Policy, 35(1), 56–67.CrossRefGoogle Scholar
  22. Carlsson, B., Jacobsson, S., Holmén, M., & Rickne, A. (2002). Innovation systems: Analytical and methodological issues. Research Policy, 31(2), 233–245.CrossRefGoogle Scholar
  23. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.CrossRefGoogle Scholar
  24. Chen, C., & Carr, L. (1999). Trailblazing the literature of hypertext: Author co-citation analysis (1989–1998). In Proceedings of the tenth ACM conference on hypertext (pp. 51–60). Darmstadt, Germany.Google Scholar
  25. Chen, C., Hu, Z., Liu, S., & Tseng, H. (2012). Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opinion on Biological Therapy, 12(5), 593–608.CrossRefGoogle Scholar
  26. Cobo, M. J., López Herrera, A. G., Herrera Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.CrossRefGoogle Scholar
  27. Coenen, L., Benneworth, P., & Truffer, B. (2012). Toward a spatial perspective on sustainability transitions. Research Policy, 41(6), 968–979.CrossRefGoogle Scholar
  28. Cooke, P. (1992). Regional innovation systems: Competitive regulation in the new Europe. Geoforum, 23(3), 365–382.CrossRefMathSciNetGoogle Scholar
  29. Cooke, P. (2001). Regional innovation systems, clusters and the knowledge economy. Industrial and Corporate Change, 10(4), 945–974.Google Scholar
  30. Cooke, P., Heidenreich, M., & Braczyk, H.-J. (Eds.). (2004). Regional innovation systems: The role of governance in a globalized world (2nd ed.). London: Routledge.Google Scholar
  31. Cooke, P. N., Boekholt, P., & Tödtling, F. (2000). The governance of innovation in Europe: Regional perspectives on global competitiveness (pp. 97–118). London: Pinter.Google Scholar
  32. Cooke, P., & Morgan, K. (1998). The associational economy: Firms, regions, and innovation. Oxford: Oxford University Press.Google Scholar
  33. Crane, D. (1972). Invisible colleges. Diffusion of knowledge in scientific communities. Chicago: The University of Chicago Press.Google Scholar
  34. Cruz, S. C. S., & Teixeira, A. A. C. (2010). The evolution of the cluster literature: Shedding light on the regional studies–regional science debate. Regional Studies, 44(9), 1263–1288.CrossRefGoogle Scholar
  35. Dalum, B., Johnson B. Å., & Lundvall B.-Å. (1992). Public policy in the learning society. In B. Å. Lundvall (Ed.), National systems of innovation (pp. 296–317). London: Pinter Publisher.Google Scholar
  36. DeBresson, C., & Amesse F. (1991). Networks of innovators: A review and introduction to the issue. Research Policy, 20(5), 363–379.Google Scholar
  37. Doloreux, D., & Parto, S. (2005). Regional innovation systems: Current discourse and unresolved issues. Technology in Society, 27(2), 133–153.CrossRefGoogle Scholar
  38. Dosi, G. (1982). Technological paradigms and technological trajectories. Research Policy, 11(3), 147–162.Google Scholar
  39. Dosi, G., Freeman, C., Nelson, R., Silverberg, G., & Soete, L. L. (1988). Technical change and economic theory. London: Pinter Publishers.Google Scholar
  40. Edquist, C. (Ed.). (1997). Systems of innovation: Technologies, institutions, and organizations. Hove: Psychology Press.Google Scholar
  41. Edquist, C. (2005). Systems of innovation perspectives and challenges. In J. Fagerberg, D. Mowery & R. Nelson (Eds.), The oxford handbook on innovation (pp. 181–208). Oxford: Oxford University Press.Google Scholar
  42. Feyerabend, P. (1975). Against method. London: New Left Books.Google Scholar
  43. Florida, R. (1995). Toward the learning region. Futures, 27(5), 527–536.Google Scholar
  44. Freeman, C. (1982). The economics of industrial innovation. London: Pinter Publishers.Google Scholar
  45. Freeman, C. (1987). Technology policy and economic performance: Lessons from Japan. London: Frances Pinter.Google Scholar
  46. Freeman, C. (1994). Innovation and growth. In M. Dodgson & R. Rothwell (Eds.), The handbook of industrial innovation (pp. 78–93). Aldershot: Edward Elgar Publishing.Google Scholar
  47. Freeman, C. (1995). The ‘National System of Innovation’ in historical perspective. Cambridge Journal of Economics, 19(1), 5–24.Google Scholar
  48. Galli, R., & Teubal, M. (1997). Paradigmatic shifts in national innovation systems. In C. Edquist (Ed.), Systems of innovation: Technologies, institutions and organizations (pp. 342–370). London: Pinter Publishers.Google Scholar
  49. Garcia, R., & Calantone, R. (2002). A critical look at technological innovation typology and innovativeness terminology: A literature review. Journal of Product Innovation Management, 19(2), 110–132.CrossRefGoogle Scholar
  50. Gertler, M., & Levitte, Y. (2005). Local nodes in global networks: The geography of knowledge flows in biotechnology innovation. Industry and Innovation, 12(4), 487–507.Google Scholar
  51. Granstrand, O., Bohlin, E., Oskarsson, C., & Sjöberg, N. (1992). External technology acquisition in large multi-technology corporations. R&D Management, 22(2), 111–134.CrossRefGoogle Scholar
  52. He, Q. (1999). Knowledge discovery through co-word analysis. Library Trends, 48(1), 133–159.Google Scholar
  53. Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74(4), 413–432.CrossRefGoogle Scholar
  54. Hood, W. W., & Wilson, W. S. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291–314.CrossRefGoogle Scholar
  55. Hu, C. P., Hu, J. M., Gao, Y., & Zhang, Y. K. (2011). A journal co-citation analysis of library and information science in China. Scientometrics, 86(3), 657–670.CrossRefGoogle Scholar
  56. Iammarino, S. (2005). An evolutionary integrated view of regional systems of innovation: Concepts, measures and historical perspectives. European Planning Studies, 13(4), 497–519.CrossRefGoogle Scholar
  57. Jacobsson, S., & Bergek, A. (2004). Transforming the energy sector: The evolution of technological systems in renewable energy technology. Industrial and Corporate Change, 13(5), 815–849.Google Scholar
  58. Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: An analytical framework and key issues for research. Energy policy, 28(9), 625–640.CrossRefGoogle Scholar
  59. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18.CrossRefGoogle Scholar
  60. Klagge, B., Liu, Z., & Campos Silva, P. (2012). Constructing China’s wind energy innovation system. Energy Policy, 50(12), 370–382.CrossRefGoogle Scholar
  61. Koschatzky, K. (1998). Firm innovation and region: the role of space in innovation processes. International Journal of Innovation Management, 2(04), 383–408.CrossRefGoogle Scholar
  62. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago press.Google Scholar
  63. Lakatos, I., Worrall, J., & Currie, G. (1978). The methodology of scientific research programmes. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  64. Lee, P. C., & Su, H. N. (2010). Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis. Innovation: Management Policy and Practice, 12(1), 26–40.Google Scholar
  65. Leydesdorff, L. (1995). The challenge of scientometrics: The development, measurement, and self-organization of scientific communications. Leiden: DSWO Press.Google Scholar
  66. Leydesdorff, L. (2005). Similarity measures, author cocitation analysis, and information theory. Journal of the American Society for Information Science and Technology, 56(7), 769–772.CrossRefGoogle Scholar
  67. Leydesdorff, L., Park, H. W., & Wagner, C. (2014). International coauthorship relations in the social sciences citation index: Is internationalization leading the network? Journal of the Association for Information Science and Technology, 65(10), 2111–2126.CrossRefGoogle Scholar
  68. Leydesdorff, L., & Schank, T. (2008). Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments. Journal of the American Society for Information Science and Technology, 59(11), 1810–1818.CrossRefGoogle Scholar
  69. Liu, Z. (2005). Visualizing the intellectual structure in urban studies: A journal co-citation analysis (1992–2002). Scientometrics, 62(3), 385–402.CrossRefGoogle Scholar
  70. Lundvall, B. A. (1988). Innovation as an interactive process: From user-producer interaction to the national system of innovation. In G. Dosi, et al. (Eds.), Technical change and economic theory (pp. 349–369). London: Pinter Publisher.Google Scholar
  71. Lundvall, B. Å. (1992). National systems of innovation: Towards a theory of innovation and interactive learning. London: Pinter Publishers.Google Scholar
  72. Lundvall, B. Å., & Johnson, B. (1994). The learning economy. Journal of Industry Studies, 1(2), 23–42.Google Scholar
  73. Lundvall, B. Å. (1999). National business systems and national systems of innovation. International Studies of Management & Organization, 29(2), 60–77.Google Scholar
  74. Lundvall, B. Å. (2007). National innovation systems—Analytical concept and development tool. Industry and Innovation, 14(1), 95–119.CrossRefGoogle Scholar
  75. Lundvall, B. Å., Johnson, B., Andersen, E. S., & Dalum, B. (2002). National systems of production, innovation and competence building. Research Policy, 31(2), 213–231.CrossRefGoogle Scholar
  76. Lundvall, B. Å., Joseph, K. J., & Chaminade, C. (2009). Handbook of innovation systems and developing countries: Building domestic capabilities in a global setting. Aldershot: Edward Elgar Publishing.CrossRefGoogle Scholar
  77. Luukkonen, T., Persson, O., & Sivertsen, G. (1992). Understanding patterns of international scientific collaboration. Science, Technology and Human Values, 17(1), 101–126.CrossRefGoogle Scholar
  78. Luukkonen, T., Tijssen, R. W., & Persson, O. (1993). The measurement of international scientific collaboration. Scientometrics, 28(1), 15–36.CrossRefGoogle Scholar
  79. MacKinnon, D., Cumbers, A., & Chapman, K. (2002). Learning, innovation and regional development: A critical appraisal of recent debates. Progress in Human Geography, 26(3), 293–311.CrossRefGoogle Scholar
  80. Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31(2), 247–264.CrossRefGoogle Scholar
  81. Markard, J., & Truffer, B. (2008). Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research Policy, 37(4), 596–615.CrossRefGoogle Scholar
  82. Metcalfe, J. S. (1995). Technology systems and technology policy in an evolutionary framework. Cambridge Journal of Economics, 19(1), 25–46.Google Scholar
  83. Morgan, K. (1997). The learning region: Institutions, innovation and regional renewal. Regional Studies, 31(5), 491–503.Google Scholar
  84. Moulaert, F., & Sekia, F. (2003). Territorial innovation models: A critical survey. Regional Studies, 37(3), 289–302.CrossRefGoogle Scholar
  85. Nelson, R. R. (1992). National innovation systems: A retrospective on a study. Industrial and Corporate Change, 2(1), 347–374.CrossRefGoogle Scholar
  86. Nelson, R. R. (1993). National innovation systems: A comparative analysis. New York: Oxford University Press.Google Scholar
  87. Nelson, R. R., & Winter, G. S. (1982). An evolutionary theory of economic change. Cambridge: Harvard Business School Press.Google Scholar
  88. Nerur, S. P., Rasheed, A. A., & Natarajan, V. (2008). The intellectual structure of the strategic management field: An author co-citation analysis. Strategic Management Journal, 29(3), 319–336.CrossRefGoogle Scholar
  89. OECD. (2002). Dynamising National Innovation Systems. Paris: OECD.Google Scholar
  90. Oinas, P., & Malecki, E. J. (2002). The evolution of technologies in time and space: From national and regional to spatial innovation systems. International Regional Science Review, 25(1), 102–131.CrossRefGoogle Scholar
  91. Ortega, J. L. (2014). Influence of co-authorship networks in the research impact: Ego network analyses from Microsoft Academic Search. Journal of Informetrics., 8(3), 728–737.CrossRefGoogle Scholar
  92. Osareh, F. (1996a). Bibliometrics, citation analysis and co-citation analysis: A review of literature.1. LIBRI, 46(3), 149–158.CrossRefGoogle Scholar
  93. Osareh, F. (1996b). Bibliometrics, citation analysis and co-citation analysis: A review of literature.2. LIBRI, 46(3), 217–225.CrossRefGoogle Scholar
  94. Pavitt, K. (1992). Internationalization of technological innovation. Science and Public Policy, 19(2), 119–123.Google Scholar
  95. Perez, C. (2010). Technological revolutions and techno-economic paradigms. Cambridge Journal of Economics, 34(1), 185–202.CrossRefGoogle Scholar
  96. Persson, O., Danell, R., & Wiborg Schneider, J. (2009). How to use Bibexcel for various types of bibliometric analysis. In F. Åström, B. R. Danell, Larsen & J. Wiborg Schneider (Eds.), Celebrating scholarly communication studies: A festschrift for Olle Persson at his 60th birthday (pp. 9–24). International Society for Scientometrics and Informetrics. Leuven, Belgium.Google Scholar
  97. Piore, M., & Sabel, C. (1984). The second industrial divide: Possibilities for prosperity. New York: Basic Books.Google Scholar
  98. Porter, A. L., & Cunningham, S. W. (2004). Tech mining: Exploiting new technologies for competitive advantage. New York: Wiley.CrossRefGoogle Scholar
  99. Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348–349.MathSciNetGoogle Scholar
  100. Pritchard, A., & Wittig, G. R. (1981). Bibliometrics: A bibliography and index (Vol. 1, pp. 1874–1959). Watford Hertfordshire England: Allm Books.Google Scholar
  101. Rosenberg, N. (1976). Perspectives on technology. Cambridge: Cambridge University Press.Google Scholar
  102. Samoylenko, I., Chao, T. C., Liu, W. C., & Chen, C. M. (2006). Visualizing the scientific world and its evolution. Journal of the American Society for Information Science and Technology, 57(11), 1461–1469.CrossRefGoogle Scholar
  103. Schumpeter, J. (1934). The theory of economic development. Cambridge, MA: Harvard University Press.Google Scholar
  104. Schumpeter, J. (1942). Capitalism, socialism, and democracy. New York: Harper and Brothers.Google Scholar
  105. Shafique, M. (2012). Thinking inside the box? Intellectual structure of the knowledge base of innovation research (1988–2008). Strategic Management Journal, 34(1), 62–93.CrossRefGoogle Scholar
  106. Silva, E. G., & Teixeira, A. A. C. (2008). Surveying structural change: Seminal contributions and a bibliometric account. Structural Change and Economic Dynamics, 19(4), 273–300.CrossRefGoogle Scholar
  107. Sci2 Team. (2009). Science of Science (Sci2) Tool. Indiana University and SciTech Strategies. (downloaded on 12 November 2012 from http://sci.slis.indiana.edu).
  108. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for information Science, 24(4), 265–269.CrossRefGoogle Scholar
  109. Small, H. G. (1980). Co-citation context analysis and the structure of paradigms. Journal of Documentation, 36(3), 183–196.Google Scholar
  110. Smith, A., Voß, J. P., & Grin, J. (2010). Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Research Policy, 39(4), 435–448.CrossRefGoogle Scholar
  111. Teixeira, A. A. C. (2014). Evolution, roots and influence of the literature on national systems of innovation: A bibliometric account. Cambridge Journal of Economics, 38(1), 181–214.CrossRefGoogle Scholar
  112. Thongpapanl, N. T. (2012). The changing landscape of technology and innovation management: An updated ranking of journals in the field. Technovation, 32(5), 257–271.CrossRefGoogle Scholar
  113. Tödtling, F., & Trippl, M. (2005). One size fits all? Towards a differentiated regional innovation policy approach. Research Policy, 3(8), 1203–1219.Google Scholar
  114. Tsay, M., Xu, H., & Wu, C. (2003). Journal co-citation analysis of semiconductor literature. Scientometrics, 57(1), 7–25.CrossRefGoogle Scholar
  115. Uriona-Maldonado, M., Dos Santos, R. N. M., & Varvakis, G. (2012). State of the art on the Systems of Innovation research: A bibliometrics study up to 2009. Scientometrics, 91(3), 1–20.CrossRefGoogle Scholar
  116. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar
  117. van Leeuwen, T. (2006). The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics, 66(1), 133–154.CrossRefGoogle Scholar
  118. van Leeuwen, T. N. (2009). Strength and weakness of national science systems: A bibliometric analysis through cooperation patterns. Scientometrics, 79(2), 389–408.CrossRefGoogle Scholar
  119. van Leeuwen T. N. (2013). Bibliometric research evaluations, web of science and the social sciences and humanities: A problematic relationship? Retrieved from: http://www.bibliometrie-pf.de/article/view/173
  120. van Leeuwen, T. N., Moed, H. F., Tijssen, R. W., Visser, M. S., & Van Raan, A. J. (2001). Language biases in the coverage of the Science Citation Index and its consequences for international comparisons of national research performance. Scientometrics, 51(1), 335–346.CrossRefGoogle Scholar
  121. van Raan, A. F. J. (1996). Advanced bibliometric methods as quantitative core of peer review based evaluation and foresight exercises. Scientometrics, 36(3), 397–420.CrossRefGoogle Scholar
  122. Wagner, C. S. (2008). The new invisible college: Science for development. Washington DC: Brooking Press.Google Scholar
  123. White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355.Google Scholar
  124. Wise, J. A. (1999). The ecological approach to text visualization. Journal of the American Society for Information Science, 50(13), 1224–1233.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Zhigao Liu
    • 2
  • Yimei Yin
    • 1
    Email author
  • Weidong Liu
    • 2
  • Michael Dunford
    • 2
    • 3
  1. 1.Institute of TourismBeijing Union UniversityBeijingChina
  2. 2.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
  3. 3.School of Global Studies, University of SussexBrighton UK

Personalised recommendations