Scientometrics

, Volume 103, Issue 1, pp 1–31 | Cite as

Ranking and identifying influential scientists versus mass producers by the Perfectionism Index

  • Antonis Sidiropoulos
  • Dimitrios Katsaros
  • Yannis Manolopoulos
Article

Abstract

The concept of h-index has been proposed to easily assess a researcher’s performance with a single number. However, by using only this number, we lose significant information about the distribution of citations per article in an author’s publication list. In this article, we study an author’s citation curve and we define two new areas related to this curve. We call these “penalty areas”, since the greater they are, the more an author’s performance is penalized. We exploit these areas to establish new indices, namely Perfectionism Index and eXtreme Perfectionism Index (XPI), aiming at categorizing researchers in two distinct categories: “influentials” and “mass producers”; the former category produces articles which are (almost all) with high impact, and the latter category produces a lot of articles with moderate or no impact at all. Using data from Microsoft Academic Service, we evaluate the merits mainly of PI as a useful tool for scientometric studies. We establish its effectiveness into separating the scientists into influentials and mass producers; we demonstrate its robustness against self-citations, and its uncorrelation to traditional indices. Finally, we apply PI to rank prominent scientists in the areas of databases, networks and multimedia, exhibiting the strength of the index in fulfilling its design goal.

Keywords

Ranking h-Index Citation analysis Bibliometrics 

References

  1. Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E., & Herrera, F. (2009). h-index: A review focused in its variants, computation and standardization for different scientific fields. Journal of Informetrics, 3(4), 273–289.CrossRefGoogle Scholar
  2. Anderson, T. R., Hankin, R. K. S., & Killworth, P. D. (2008). Beyond the Durfee square: Enhancing the h-index to score total publication output. Scientometrics, 76, 577–588.CrossRefGoogle Scholar
  3. Basaras, P., Katsaros, D., & Tassiulas, L. (2013). Detecting influential spreaders in complex, dynamic networks. IEEE Computer magazine, 46(4), 26–31.CrossRefGoogle Scholar
  4. Baum, J. A. C. (2012). The excess-tail ratio: Correcting Journal Impact Factors for Citation Quality. SSRN: http://ssrn.com/abstract=2038102.
  5. Bornmann, L., Mutz, R., & Daniel, H. D. (2010). The h index research output measurement: Two approaches to enhance its accuracy. Journal of Informetrics, 4(3), 407–414.CrossRefGoogle Scholar
  6. Chen, D. Z., Huang, M. H., & Ye, F. Y. (2013). A probe into dynamic measures for h-core and h-tail. Journal of Informetrics, 7(1), 129–137.CrossRefGoogle Scholar
  7. Cole, S., & Cole, J. R. (1967). Scientific output and recognition—Study in operation of reward system in science. American Sociological Review, 32(3), 377–390.CrossRefGoogle Scholar
  8. Cormode, G., Ma, Q., Muthukrishnan, S., & Thompson, B. (2013). Socializing the \(h\)-index. Journal of Informetrics, 7(3), 718–721.CrossRefGoogle Scholar
  9. Dorta-González, P., & Dorta-González, M. I. (2011). Central indexes to the citation distribution: A complement to the h-index. Scientometrics, 88(3), 729–745.CrossRefGoogle Scholar
  10. Egghe, L. (2006). Theory and practice of the \(g\)-index. Scientometrics, 69(1), 131–152.CrossRefMathSciNetGoogle Scholar
  11. Feist, G. J. (1997). Quantity, quality, and depth of research as influences on scientific eminence: Is quantity most important? Creativity Research Journal, 10, 325–335.CrossRefGoogle Scholar
  12. Franceschini, F., & Maisano, D. (2010). The citation triad: An overview of a scientist’s publication output based on Ferrers diagrams. Journal of Informetrics, 4(4), 503–511.CrossRefGoogle Scholar
  13. García-Pérez, M. A. (2012). An extension of the \(h\)-index that covers the tail and the top of the citation curve and allows ranking researchers with similar \(h\). Journal of Informetrics, 6(4), 689–699.CrossRefGoogle Scholar
  14. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16,569–16,572.CrossRefGoogle Scholar
  15. Hirsch, J. E. (2007). Does the h index have predictive power? Proceedings of the National Academy of Sciences, 104(49), 9,193–19,198.CrossRefGoogle Scholar
  16. Hirsch, J. E. (2010). An index to quantify an individual’s scientific research output that takes into account the effect of multiple coauthorship. Scientometrics, 85(3), 741–754.CrossRefGoogle Scholar
  17. Jin, B., Liang, L., Rousseau, R., & Egghe, L. (2007). The R- and AR-indices: Complementing the h-index. Chinese Science Bulletin, 52(6), 855–863. doi:10.1007/s11434-007-0145-9.CrossRefGoogle Scholar
  18. Katsaros, D., Akritidis, L., & Bozanis, P. (2009). The \(f\) index: Quantifying the impact of coterminal citations on scientists’ ranking. Journal of the American Society for Information Science and Technology, 60(5), 1051–1056.CrossRefGoogle Scholar
  19. Kuan, C. H., Huang, H. H., & Chen, D. Z. (2011). Positioning research and innovation performance using shape centroids of h-core and h-tail. Journal of Informetrics, 5(4), 515–528.CrossRefGoogle Scholar
  20. Liu, J. Q., Rousseau, R., Wang, M. S., & Ye, F. Y. (2013). Ratios of h-cores, h-tails and uncited sources in sets of scientific papers and technical patents. Journal of Informetrics, 7(1), 190–197.CrossRefGoogle Scholar
  21. Rosenberg, M. S. (2011). A biologist’s guide to impact factors. Arizona: Tech. rep., Arizona State University.Google Scholar
  22. Rousseau, R. (2006). New developments related to the Hirsch index. Science Focus, 1(4), 23–25.Google Scholar
  23. Schreiber, M. (2007). Self-citation corrections for the Hirsch index. Europhysics Letters, 78(3), 30002.CrossRefGoogle Scholar
  24. Sidiropoulos, A., Katsaros, D., & Manolopoulos, D. (2007). Generalized Hirsch \(h\)-index for disclosing latent facts in citation networks. Scientometrics, 72(2), 253–280.CrossRefGoogle Scholar
  25. Spruit, H. C. (2012). The relative significance of the \(h\)-index. Tech. rep., http://arxiv.org/abs/1201.5476v1.
  26. Vinkler, P. (2009). The \(\pi \)-index: A new indicator for assessing scientific impact. Journal of Information Science, 35(5), 602–612.CrossRefGoogle Scholar
  27. Vinkler, P. (2011). Application of the distribution of citations among publications in scientometric evaluations. Journal of the American Society for Information Science and Technology, 62(10), 1963–1978.CrossRefGoogle Scholar
  28. Woeginger, G. J. (2008). An axiomatic characterization of the Hirsch-index. Mathematical Social Sciences, 56, 224–232.CrossRefMATHMathSciNetGoogle Scholar
  29. Ye, F. Y., Leydesdorff, L. (2013). The “Academic Trace” of the Performance Matrix: A Mathematical Synthesis of the h-Index and the Integrated Impact Indicator (I3) http://arxiv.org/abs/1307.3616.
  30. Ye, F. Y., & Rousseau, R. (2010). Probing the \(h\)-core: An investigation of the tail-core ratio for rank distributions. Scientometrics, 84(2), 431–439.CrossRefGoogle Scholar
  31. Zhang, C. T. (2009). The \(e\)-index, complementing the \(h\)-index for excess citations. PLoS One, 4(5), e5429.CrossRefGoogle Scholar
  32. Zhang, C. T. (2013a). The h\(^\prime \)-index: Effectively improving the h-index based on the citation distribution. PLOS One, 8(4), e59,912.CrossRefGoogle Scholar
  33. Zhang, C. T. (2013b). A novel triangle mapping technique to study the h-index based citation distribution. Nature Scientific Reports, 3(1023).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Department of Information TechnologyAlexander Technological Educational Institute of ThessalonikiThessalonikiGreece
  2. 2.Department of Electrical and Computer EngineeringUniversity of ThessalyThessalyGreece
  3. 3.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations