Scientometrics

, Volume 102, Issue 1, pp 629–651 | Cite as

Patents as instruments for exploring innovation dynamics: geographic and technological perspectives on “photovoltaic cells”

  • Loet Leydesdorff
  • Floortje Alkemade
  • Gaston Heimeriks
  • Rinke Hoekstra
Article

Abstract

The recently developed Cooperative Patent Classifications of the U.S. Patent and Trade Office (USPTO) and the European Patent Office (EPO) provide new options for an informed delineation of samples in both USPTO data and the Worldwide Patent Statistical Database (PatStat) of EPO. Among the “technologies for the mitigation of climate change” (class Y02), we zoom in on nine material technologies for photovoltaic cells; and focus on one of them (CuInSe2) as a lead case. Two recently developed techniques for making patent maps with interactive overlays—geographical ones using Google Maps and maps based on citation relations among International Patent Classifications (IPC)—are elaborated into dynamic versions that allow for online animations and comparisons by using split screens. Various forms of animation are discussed. The longitudinal development of Rao-Stirling diversity in the IPC-based maps provided us with a heuristics for studying technological diversity in terms of generations of the technology. The longitudinal patterns are clear in USPTO data more than in PatStat data because PatStat aggregates patent information from countries in different stages of technological development, whereas one can expect USPTO patents to be competitive at the technological edge.

Keywords

Innovation Trajectory Patent Classification Map Generations Photovoltaics 

References

  1. Anderson, P., & Tushman, M. L. (1990). Technological discontinuities and dominant designs: A cyclical model of technological change. Administrative Science Quarterly, 35, 604–633.CrossRefGoogle Scholar
  2. Archibugi, D., & Pianta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451–468.CrossRefGoogle Scholar
  3. Arthur, W. B. (2009). The nature of technology. New York, NY: Free Press.Google Scholar
  4. Balconi, M., Breschi, S., & Lissoni, F. (2004). Networks of inventors and the role of academia: An exploration of Italian patent data. Research Policy, 33(1), 127–145.CrossRefGoogle Scholar
  5. Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 8(10), 10008.Google Scholar
  6. Bornmann, L., de Moya-Anegón, F., & Leydesdorff, L. (2012). The new excellence indicator in the World Report of the SCImago Institutions Rankings 2011. Journal of Informetrics, 6(3), 333–335.CrossRefGoogle Scholar
  7. Bornmann, L., & Leydesdorff, L. (2011). Which cities produce excellent papers worldwide more than can be expected? A new mapping approach—Using Google Maps—Based on statistical significance testing. Journal of the American Society for Information Science and Technology, 62(10), 1954–1962.CrossRefGoogle Scholar
  8. Bornmann, L., Leydesdorff, L., Walch-Solimena, C., & Ettl, C. (2011). Mapping excellence in the geography of science: An approach based on Scopus data. Journal of Informetrics, 5(4), 537–546. doi:10.1016/j.joi.2011.05.005.CrossRefGoogle Scholar
  9. Breschi, S., & Lissoni, F. (2004). Knowledge networks from patent data. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 613–643). Dordrecht: Kluwer Academic Publishers.Google Scholar
  10. Criscuolo, P. (2006). The ‘home advantage’ effect and patent families. A comparison of OECD triadic patents, the USTPTO and EPO. Scientometrics, 66(1), 23–41.CrossRefGoogle Scholar
  11. De Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. New York: Cambridge University Press.CrossRefGoogle Scholar
  12. De Rassenfosse, G., Dernis, H., Guellec, D., Picci, L., & Van Pottelsberghe de la Potterie, B. (2013). The worldwide count of priority patents: A new indicator of inventive activity. Research Policy, 42(3), 720–737.CrossRefGoogle Scholar
  13. de Solla Price, D. J. (1984). The science/technology relationship, the craft of experimental science, and policy for the improvement of high technology innovation. Research Policy, 13(1), 3–20.CrossRefGoogle Scholar
  14. Feldman, M. P., & Audretsch, D. B. (1999). Innovation in cities: Science-based diversity, specialization and localized competition. European Economic Review, 43(2), 409–429.CrossRefGoogle Scholar
  15. Fire, A., Xu, S. Q., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811.CrossRefGoogle Scholar
  16. Geels, F. W. (2007). Feelings of discontent and the promise of middle range theory for STS examples from technology dynamics. Science, Technology and Human Values, 32(6), 627–651.CrossRefGoogle Scholar
  17. Granstrand, O. (1999). The economics and management of intellectual property: Towards intellectual capitalism. Cheltenham: Edward Elgar.Google Scholar
  18. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2013). Solar cell efficiency tables (version 41). Progress in Photovoltaics: Research and Applications, 21(1), 1–11. doi:10.1002/pip.2352.CrossRefGoogle Scholar
  19. Griliches, Z. (1994). Productivity, R&D and the data constraint. American Economic Review, 84(1), 1–23.Google Scholar
  20. Hall, B. H., Jaffe, A. B., & Trajtenberg, M. (2002). The NBER patent-citations fata file: Lessons, insights, and methodological tools. In A. B. Jaffe & M. Trajtenberg (Eds.), Patents, citations, & innovations (pp. 403–459). Cambrigde, MA: The MIT Press.Google Scholar
  21. Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California, Riverside. http://faculty.ucr.edu/~hanneman/nettext/.
  22. He, J., & Fallah, M. H. (2011). The typology of technology clusters and its evolution—Evidence from the hi-tech industries. Technological Forecasting and Social Change, 78(6), 945–952.CrossRefGoogle Scholar
  23. Heimeriks, G., Alkemade, F., & Leydesdorff, L. (in preparation). The path and place dependent development evolution of PV technology.Google Scholar
  24. Jaffe, A. B. (1986). Technological opportunity and spillovers of R&D: Evidence from firm’s patents, profits, and market value. American Economic Review, 76(5), 984–1001.Google Scholar
  25. Jaffe, A. B., & Trajtenberg, M. (2002). Patents, citations, and innovations: A window on the knowledge economy. Cambridge, MA/London: MIT Press.Google Scholar
  26. Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7–15.CrossRefMathSciNetMATHGoogle Scholar
  27. Kay, L., Newman, N., Youtie, J., Porter, A. L., & Rafols, I. (in press). Patent overlay mapping: Visualizing technological distance. Journal of the American Society for Information Science and Technology, preprint at arXiv:1208.4380.Google Scholar
  28. Leydesdorff, L., & Ahrweiler, P. (in press). In search of a network theory of innovations: Relations, positions, and perspectives. Journal of the American Society for Information Science and Technology. doi:10.1002/asi.23127.
  29. Leydesdorff, L., & Bornmann, L. (2012). Mapping (USPTO) patent data using overlays to google maps. Journal of the American Society for Information Science and Technology, 63(7), 1442–1458.CrossRefGoogle Scholar
  30. Leydesdorff, L., Kushnir, D., & Rafols, I. (2012). Interactive overlay maps for US Patent (USPTO) data based on International Patent Classifications (IPC). Scientometrics. doi: 10.1007/s11192-012-0923-2.
  31. Leydesdorff, L., & Rafols, I. (2011). How do emerging technologies conquer the world? An exploration of patterns of diffusion and network formation. Journal of the American Society for Information Science and Technology, 62(5), 846–860.CrossRefGoogle Scholar
  32. Leydesdorff, L., Rotolo, D., & de Nooy, W. (2013). Innovation as a nonlinear process, the scientometric perspective, and the specification of an “innovation opportunities explorer”. Technology Analysis & Strategic Management, 25(6), 641–653.CrossRefGoogle Scholar
  33. Lundin, P. (2011). Is silence still golden? Mapping the RNAi patent landscape. Nature Biotechnology, 29(6), 493–497.CrossRefGoogle Scholar
  34. McGrath, C., Krackhardt, D., & Blythe, J. (2003). Visualizing complexity in networks: Seeing both the forest and the trees. Connections, 25(1), 37–47.Google Scholar
  35. Mowery, D. C., Nelson, R. R., Sampat, B. N., & Ziedonis, A. A. (2001). The growth of patenting and licensing by US universities: An assessment of the effects of the Bayh-Dole act of 1980. Research Policy, 30(1), 99–119.CrossRefGoogle Scholar
  36. O’Regan, B., & Grätzel, M. (1991). Low cost and highly efficient solar cells based on the sensitization of colloidal titanium dioxide. Nature, 335, 737–740.CrossRefGoogle Scholar
  37. OECD. (2009). Science, technology and industry scoreboard. Paris: OECD.Google Scholar
  38. Peters, M., Schneider, M., Griesshaber, T., & Hoffmann, V. H. (2012). The impact of technology-push and demand-pull policies on technical change—Does the locus of policies matter? Research Policy, 41(8), 1296–1308.CrossRefGoogle Scholar
  39. Porter, A. L., & Cunningham, S. W. (2005). Tech mining. Competitive Intelligence Magazine, 8(1), 30–36.Google Scholar
  40. Rao, C. R. (1982). Diversity: Its measurement, decomposition, apportionment and analysis. Sankhy: The Indian Journal of Statistics, Series A, 44(1), 1–22.MATHGoogle Scholar
  41. Rotolo, D., Rafols, I., Hopkins, M. M., & Leydesdorff, L. (in preparation). Mapping De-Facto governance in the case of emerging science and technologies. http://arxiv.org/abs/1303.4672.
  42. Scheu, M., Veefkind, V., Verbandt, Y., Galan, E. M., Absalom, R., & Förster, W. (2006). Mapping nanotechnology patents: The EPO approach. World Patent Information, 28, 204–211.CrossRefGoogle Scholar
  43. Schmookler, J. (1962). Economic sources of inventive activity. The Journal of Economic History, 22, 1–20.Google Scholar
  44. Schoen, A., Villard, L., Laurens, P., Cointet, J.-P., Heimeriks, G., & Alkemade, F. (2012). The network structure of technological developments; technological distance as a walk on the technology map. Paper presented at the Science & Technology Indicators (STI) Conference 2012 Montreal.Google Scholar
  45. Sci2 Team. (2009). Science of science (Sci2) tool. Indiana University and SciTech Strategies. https://sci2.cns.iu.edu.
  46. Shafarman, W. N., & Stolt, L. (2003). Cu (InGa) Se2 solar cells. In A. Luque & S. Hegedus (Eds.), Handbook of photovoltaic science and engineering (pp. 567–616). Hoboken, NJ: Wiley.Google Scholar
  47. Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147–1155.CrossRefGoogle Scholar
  48. Squicciarini, M., Dernis, H., & Criscuolo, C. (2013). Measuring patent quality: Indicators of technological and economic value (DSTI/DOC(2013) 3). Paris: Organisation for Economic Co-operation and Development, OECD.CrossRefGoogle Scholar
  49. Stirling, A. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society, Interface, 4(15), 707–719.CrossRefGoogle Scholar
  50. Unold, T., & Kaufmans, C. A. (2012). Chalcopyrite thin film materials and solar cells, Chap. 1.18. In W. G. J. H. M. van Sark (Ed.) Photovoltaic technology, Vol. 1. In A. Sayigh (Ed.) Comprehensive renewable energy. Elsevier, UK, pp. 5–11.Google Scholar
  51. USPTO. (2009). Pilot program for green technologies including greenhouse gas reduction, Federal Register 74(234, 8 December 2009), 64666–64669. http://www.uspto.gov/patents/law/notices/74fr64666.pdf.
  52. Veefkind, V., Hurtado-Albir, J., Angelucci, S., Karachalios, K., & Thumm, N. (2012). A new EPO classification scheme for climate change mitigation technologies. World Patent Information, 34(2), 106–111.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Loet Leydesdorff
    • 1
  • Floortje Alkemade
    • 2
  • Gaston Heimeriks
    • 2
  • Rinke Hoekstra
    • 3
    • 4
  1. 1.Amsterdam School of Communication Research (ASCoR)University of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Innovation Studies, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  3. 3.Department of Computer ScienceVU UniversityAmsterdamThe Netherlands
  4. 4.Faculty of LawUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations