, Volume 102, Issue 1, pp 519–557 | Cite as

Analysing the conceptual evolution of qualitative marketing research through science mapping analysis

  • E. M. Murgado-Armenteros
  • M. Gutiérrez-Salcedo
  • F. J. Torres-Ruiz
  • M. J. Cobo


This article examines the conceptual evolution of qualitative research in the field of marketing from 1956 to 2011, identifying the main themes and applications for which it has been used and the trends for the future. Science mapping analysis was employed, using co-word networks in a longitudinal framework. Science mapping analysis differs from other tools in that it includes the use of bibliometric indicators. The great number of studies published makes it possible to undertake a conceptual analysis of how qualitative marketing research has evolved. To show the conceptual evolution of qualitative marketing research, four study periods were chosen. The results made it possible to identify eight thematic areas that employ qualitative research in the field of marketing: Consumer behaviour, Supply chain management, Dynamic capabilities, Methodology, Media, Business to business marketing, International Marketing and Customer Satisfaction.


Qualitative research Marketing research Bibliometric analysis Science mapping analysis 



This work has been supported by the Excellence Andalusian Projects TIC-5299 and TIC-5991, and National Project TIN2010-17876. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. They also wish to thank Mary Georgina Hardinge for translation and English language editing assistance.


  1. Alam, I. (2005). Fieldwork and data collection in qualitative marketing research. Qualitative Market Research: An International Journal, 8(1), 97–112.CrossRefGoogle Scholar
  2. Allwood, C. M. (2012). The distinction between qualitative and quantitative research methods is problematic. Quality & Quantity, 46(5), 1417–1429.CrossRefGoogle Scholar
  3. Alonso, S., Cabrerizo, F., Herrera-Viedma, E., & Herrera, F. (2009). h-index: A review focused in its variants, computation and standardization for different scientific fields. Journal of Informetrics, 3(4), 273–289.CrossRefGoogle Scholar
  4. Banks, M. G. (2006). An extension of the hirsch index: Indexing scientific topics and compounds. Scientometrics, 69(1), 161–168.CrossRefGoogle Scholar
  5. Bar-Ilan, J. (2010). Citations to the “introduction to informetrics” indexed by wos, scopus and google scholar. Scientometrics, 82(3), 495–506.CrossRefGoogle Scholar
  6. Belk, R. W. (Ed.). (2006). Handbook of qualitative research methods in marketing. Cheltenham, UK: Edward Elgar Publishing.Google Scholar
  7. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255.CrossRefGoogle Scholar
  8. Bryman, A. (2006). Integrating quantitative and qualitative research: How is it done? Qualitative Research, 6(1), 97–113.CrossRefGoogle Scholar
  9. Cahlik, T. (2000). Comparison of the maps of science. Scientometrics, 49(3), 373–387.CrossRefGoogle Scholar
  10. Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235.CrossRefGoogle Scholar
  11. Callon, M., Courtial, J., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research—the case of polymer chemistry. Scientometrics, 22(1), 155–205.CrossRefGoogle Scholar
  12. Campbell, M. L., & Gregor, F. (Eds.). (2004). Mapping social relations: A primer in doing institutional ethnography. California: AltaMira Press.Google Scholar
  13. Cartes-Velásquez, R., & Manterola-Delgado, C. (2014). Bibliometric analysis of articles published in ISI dental journals, 2007–2011. Scientometrics, 98(3), 2223–2233.CrossRefGoogle Scholar
  14. Chabowski, B. R., Mena, J. A., & González-Padrón, T. L. (2011). The structure of sustainability research in marketing, 1958–2008: A basis for future research opportunities. Journal of the Academy of Marketing Science, 39(1), 55–70.CrossRefGoogle Scholar
  15. Chrzanowska, J. (Ed.). (2002). Interviewing groups and individuals in qualitative market research. London: Sage Publications.Google Scholar
  16. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011a). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics, 5(1), 146–166.CrossRefGoogle Scholar
  17. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011b). Science mapping software tools: Review, analysis and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.CrossRefGoogle Scholar
  18. Cobo, M. J., López-Herrera, A. G., Herrera, F., & Herrera-Viedma, E. (2012a). A note on the ITS topic evolution in the period 2000–2009 at T-ITS. IEEE Transactions on Intelligent Transportation Systems, 13(1), 413–420.CrossRefGoogle Scholar
  19. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012b). Scimat: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630.CrossRefGoogle Scholar
  20. Cobo, M. J., Chiclana, F., Collop, A., de Oña, J., & Herrera-Viedma, E. (2014). A bibliometric analysis of the intelligent transportation systems research based on science mapping. IEEE Transactions on Intelligent Transportation Systems, 11(2), 901–908.Google Scholar
  21. Cook, D. J., & Holder, L. B. (2006). Mining graph data. New York: Wiley-Interscience.CrossRefGoogle Scholar
  22. Coulter, N., Monarch, I., & Konda, S. (1998). Software engineering as seen through its research literature: A study in co-word analysis. Journal of the American Society for Information Science, 49(13), 1206–1223.CrossRefGoogle Scholar
  23. Creswell, J. W. (Ed.). (2007). Research design: Qualitative, quantitative and mixed methods approaches (2nd ed.). Thousand Oaks, California: Sage Publications.Google Scholar
  24. Denzin, N. K., & Lincoln, Y. S. (Eds.). (1994). Handbook of qualitative research (1st ed.). Thousand Oaks, California: Sage Publications.Google Scholar
  25. Desai, P. (Ed.). (2002). Methods beyond interviewing in qualitative market research. London: Sage Publications.Google Scholar
  26. Elliott, J. (Ed.). (2005). Using narrative in social research: Qualitative and quantitative approaches. London: Sage Publications.Google Scholar
  27. Ereaut, G., Imms, M., & Callingham, M. (Eds.). (2002). Analysis and interpretation in qualitative market research. London: Sage Publications.Google Scholar
  28. Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of pubmed, scopus, web of science, and google scholar: Strengths and weaknesses. FASEB Journal, 22(2), 338–342.CrossRefGoogle Scholar
  29. Fern, E. F. (Ed.). (2001). Advanced focus group research. California: Sage Publications.Google Scholar
  30. Fetscherin, M., & Usunier, J. C. (2012). Corporate branding: An interdisciplinary literature review. European Journal of Marketing, 46(5), 733–753.CrossRefGoogle Scholar
  31. Franceschini, F., & Maisano, D. (2012). Quality & quantity journal: A bibliometric snapshot. Quality & Quantity, 46(2), 573–580.CrossRefGoogle Scholar
  32. Furnham, A. (2000). The brainstorming myth. Business Strategy Review, 11(4), 21–28.CrossRefGoogle Scholar
  33. Galvagno, M. (2011). The intellectual structure of the anti-consumption and consumer resistance field: An author co-citation analysis. European Journal of Marketing, 45(11/12), 1688–1701.CrossRefGoogle Scholar
  34. Gao-Yong, L., Ji-Ming, H., & Hui-Ling, W. (2012). A co-word analysis of digital library field in China. Scientometrics, 91(1), 203–217.CrossRefGoogle Scholar
  35. Garfield, E. (1994). Scientography: Mapping the tracks of science. Current Contents: Social & Behavioural Sciences, 7(45), 5–10.Google Scholar
  36. Glaser, B. G., & Strauss, A. L. (Eds.). (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine.Google Scholar
  37. Goldman, A., & Grinstein, A. (2010). Stages in the development of market orientation publication activity: A longitudinal assessment. European Journal of Marketing, 44(9/10), 1384–1409.CrossRefGoogle Scholar
  38. Goulding, C. (2005). Grounded theory, ethnography and phenomenology: A comparative analysis of three qualitative strategies for marketing research. European Journal of Marketing, 39(3/4), 294–308.CrossRefGoogle Scholar
  39. Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (1st ed., pp. 105–117). Thousand Oaks, California: Sage Publications.Google Scholar
  40. Gummesson, E. (2002). Relationship marketing and a new economy: It’s time for de-programming. Journal of Services Marketing, 16(7), 585–589.CrossRefGoogle Scholar
  41. Gummesson, E. (2005). Qualitative research in marketing. Road-map for a wilderness of complexity and unpredictability. European Journal of Marketing, 39(3), 309–327.Google Scholar
  42. Hammersley, M., & Atkinson, P. (Eds.). (1983). Ethnography: Principles in practice. London: Tavistock.Google Scholar
  43. Hanson, D., & Grimmer, M. (2007). The mix of qualitative and quantitative research in major marketing journals, 1993–2002. European Journal of Marketing, 41(1/2), 58–70.CrossRefGoogle Scholar
  44. Harzing, A., & van der Wal, R. (2008). Google scholar as a new source for citation analysis. Ethics in Science and Environmental Politics, 8(1), 61–73.CrossRefGoogle Scholar
  45. He, Q. (1999). Knowledge discovery through co-word analysis. Library Trends, 48(1), 133–159.Google Scholar
  46. Hirsch, J. (2005). An index to quantify an individuals scientific research out-put. Proceedings of the National Academy of Sciences, 102, 16,569–16,572.CrossRefGoogle Scholar
  47. Hoffman, D. L., & Holbrook, M. B. (1993). The intellectual structure of consumer research: A bibliometric study of author cocitations in the first 15 years of the journal of consumer research. Journal of Consumer Research, 19(4), 505–517.CrossRefGoogle Scholar
  48. Huang, M. H., & Chang, C. P. (2014). Detecting research fronts in oled field using bibliographic coupling with sliding window. Scientometrics, 98(3), 1721–1744.CrossRefGoogle Scholar
  49. Imms, M., & Ereaut, G. (Eds.). (2002). An introduction to qualitative market research. London: Sage Publications.Google Scholar
  50. Krueger, R. A., & Casey, M. A. (Eds.). (2000). Focus groups: A practical guide for applied research. Thousand Oaks, California: Sage.Google Scholar
  51. Kunz, W. H., & Hogreve, J. (2011). Toward a deeper understanding of service marketing: The past, the present, and the future. International Journal of Research in Marketing, 28(3), 231–247.CrossRefGoogle Scholar
  52. Landeta, J. (2006). Current validity of the delphi method in social sciences. Technological Forecasting and Social Change, 73(5), 467–482.CrossRefGoogle Scholar
  53. Langford, B. E. (1994). Nominal grouping sessions. Marketing Research, 6(3), 16–21.Google Scholar
  54. Lawal, M. (2009). Reconciling methodological approaches of survey and focus group. Nurse Researcher, 17(1), 54–61.CrossRefMathSciNetGoogle Scholar
  55. Leonidou, C. N., & Leonidou, L. C. (2011). Research into environmental marketing/management: A bibliographic analysis. European Journal of Marketing, 45(1/2), 68–103.CrossRefGoogle Scholar
  56. Lincoln, Y. S., & Guba, E. G. (2000). Paradigmatic controversies, contradictions and emerging confluences. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 163–188). Thousand Oaks, California: Sage Publications.Google Scholar
  57. López-Herrera, A. G., Herrera-Viedma, E., Cobo, M. J., Martínez, M. A., Kou, G., & Shi, Y. (2012). A conceptual snapshot of the first decade (2002–2011) of the international journal of information technology & decision making. International Journal of Information Technology & Decision Making, 11(2), 247–270.CrossRefGoogle Scholar
  58. Malesios, C. C., & Psarakis, S. (2014). Comparison of the h-index for different fields of research using bootstrap methodology. Quality & Quantity, 48(1), 521–545.CrossRefGoogle Scholar
  59. Martínez, M., Herrera, M., Lpez-Gijn, J., & Herrera-Viedma, E. (2014). H-classics: Characterizing the concept of citation classics through h-index. Scientometrics, 98(1), 1971–1983.CrossRefGoogle Scholar
  60. Martínez-Sánchez, M. A., Cobo, M. J., Herrera, M., & Herrera-Viedma, E. (2014). Analyzing the scientific evolution of social work using science mapping. Research on Social Work Practice (in press).Google Scholar
  61. Mertens, D. M. (Ed.). (2005). Research methods in education and psychology: Integrating diversity with quantitative, qualitative and mixed methods (2nd ed.). Thousand Oaks, California: Sage Publications.Google Scholar
  62. Moed, H., De Bruin, R., & Van Leeuwen, T. (1995). New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications. Scientometrics, 33(3), 381–422.CrossRefGoogle Scholar
  63. Morris, S. A., & Van Der Veer, Martens B. (2008). Mapping research specialties. Annual Review of Information Science and Technology, 42(1), 213–295.CrossRefGoogle Scholar
  64. Morse, J. M., & Richards, L. (Eds.). (2002). Readme First for a user’s guide to qualitative methods. Thousand Oaks, California: Sage Publications.Google Scholar
  65. Moustakis, C. (Ed.). (1994). Phenomenological research methods. Thousand Oaks, California: Sage Publications.Google Scholar
  66. Muñoz-Leiva, F., Viedma-Del-Jesus, M. I., Sánchez-Ferández, J., & López-Herrera, A. G. (2012). An application of co-word analysis and bibliometric maps for detecting the most highlighting themes in the consumer behaviour research from a longitudinal perspective. Quality & Quantity, 46(4), 1077–1095.CrossRefGoogle Scholar
  67. Noyons, E. C. M., Moed, H. F., & Luwel, M. (1999a). Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. Journal of the American Society for Information Science, 50(2), 115–131.CrossRefGoogle Scholar
  68. Noyons, E. C. M., Moed, H. F., & van Raan, A. F. J. (1999b). Integrating research performance analysis and science mapping. Scientometrics, 46(3), 591–604.CrossRefGoogle Scholar
  69. Okazaki, S., & Mueller, B. (2007). Cross-cultural advertising research: Where we have been and where we need to go. International Marketing Review, 24(5), 499–518.CrossRefGoogle Scholar
  70. Ozel, B. (2012). Individual cognitive structures and collaboration patterns in academia. Scientometrics, 91(2), 539–555.CrossRefMathSciNetGoogle Scholar
  71. Patterson, A. (2005). Processes, relationships, settings, products and consumers: The case for qualitative diary research. Qualitative Market Research: An International Journal, 8(2), 142–156.CrossRefGoogle Scholar
  72. Patton, M. Q. (Ed.). (2002). Qualitative research and evaluation methods. California: Sage Publications.Google Scholar
  73. Peters, H. P. F., & van Raan, A. F. J. (1993). Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling. Research Policy, 22(1), 23–45.CrossRefGoogle Scholar
  74. Pettigrew, S. F. (2000). Ethnography and grounded theory: A happy marriage? Advances in Consumer Research, 27, 256–260.Google Scholar
  75. Petty, N. J., Thomson, O. P., & Stew, G. (2012). Ready for a paradigm shift? Part 2: Introducing qualitative research methodologies and methods. Manual Therapy, 17(5), 378–384.CrossRefGoogle Scholar
  76. Porter, A. L., & Youtie, J. (2009). How interdisciplinary is nanotechnology? Journal of Nanoparticle Research, 11(5), 1023–1041.CrossRefGoogle Scholar
  77. Reason, P. (1994). Three approaches to participative inquiry. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (1st ed., pp. 324–339). California: Sage Publications.Google Scholar
  78. Rietzschel, E. F., Nijstad, B. A., & Stroebe, W. (2006). Productivity is not enough: A comparison of interactive and nominal brainstorming groups on idea generation and selection. Journal of Experimental Social Psychology, 42(2), 244–251.CrossRefGoogle Scholar
  79. Robson, C. (Ed.). (2011). Real world research (3rd ed.). Chichester: Wiley.Google Scholar
  80. Sale, J. E., Lohfeld, L. H., & Brazil, K. (2002). Revisiting the quantitative-qualitative debate: Implications for mixed-methods research. Quality & quantity, 36(1), 43–53.CrossRefGoogle Scholar
  81. Samiee, S., & Chabowski, B. R. (2012). Knowledge structure in international marketing: A multi-method bibliometric analysis. Journal of the Academy of Marketing Science, 40(2), 364–386.CrossRefGoogle Scholar
  82. Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799–813.CrossRefGoogle Scholar
  83. Spradley, J. P. (Ed.). (1980). Participant observation. New York: Holt, Rinehart & Winston.Google Scholar
  84. Stake, R. E. (Ed.). (1995). The art of case study research. California: Sage Publications.Google Scholar
  85. Stebbins, R. A. (1997). Lifestyle as a generic concept in ethnographic research. Quality & Quantity, 31(4), 347–360.CrossRefGoogle Scholar
  86. Sternitzke, C., & Bergmann, I. (2009). Similarity measures for document mapping: A comparative study on the level of an individual scientist. Scientometrics, 78(1), 113–130.CrossRefGoogle Scholar
  87. Strauss, A. C., & Corbin, J. M. (Eds.). (1990). Basic of qualitative research: Grounded theory procedures and techniques. California: Sage Publications.Google Scholar
  88. Tang, L., & Shapira, P. (2011). China–US scientific collaboration in nanotechnology: Patterns and dynamics. Scientometrics, 88(1), 1–16.CrossRefGoogle Scholar
  89. Uslay, C., Morgan, R. E., & Sheth, J. N. (2009). Peter drucker on marketing: An exploration of five tenets. Journal of the Academy of Marketing Science, 37(1), 47–60.CrossRefGoogle Scholar
  90. Van Eck, N. J., & Waltman, L. (2007). Bibliometric mapping of the computational intelligence field. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(5), 625–645.CrossRefGoogle Scholar
  91. Van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.CrossRefGoogle Scholar
  92. Van Manen, M. (Ed.). (1990). Researching the lived experience: Human science for an action sensitive pedagogy. University of Western Ontario, London.Google Scholar
  93. Van Raan, A. F. J. (2005). Measuring science. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 19–50). Netherlands: Springer.Google Scholar
  94. Yin, R. K. (Ed.). (2009). Case study research: Design and method (4th ed.). Los Angeles: Sage Publications.Google Scholar
  95. Zong, Q. J., Shen, H. Z., Yuan, Q. J., Hu, X. W., Hou, Z. P., & Deng, S. G. (2013). Doctoral dissertations of library and information science in China: A co-word analysis. Scientometrics, 94(2), 781–799.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • E. M. Murgado-Armenteros
    • 1
  • M. Gutiérrez-Salcedo
    • 1
  • F. J. Torres-Ruiz
    • 1
  • M. J. Cobo
    • 2
  1. 1.Department of Management and MarketingUniversity of JaénJaénSpain
  2. 2.Department of Computer ScienceUniversity of CádizCádizSpain

Personalised recommendations