, Volume 102, Issue 1, pp 135–150 | Cite as

Academic careers in Computer Science: continuance and transience of lifetime co-authorships

  • Guillaume Cabanac
  • Gilles Hubert
  • Béatrice Milard


Scholarly publications reify fruitful collaborations between co-authors. A branch of research in the science studies focuses on analyzing the co-authorship networks of established scientists. Such studies tell us about how their collaborations developed through their careers. This paper updates previous work by reporting a transversal and a longitudinal studies spanning the lifelong careers of a cohort of researchers from the DBLP bibliographic database. We mined 3,860 researchers’ publication records to study the evolution patterns of their co-authorships. Two features of co-authors were considered: (1) their expertise, and (2) the history of their partnerships with the sampled researchers. Our findings reveal the ephemeral nature of most collaborations: 70 % of the new co-authors were only one-shot partners since they did not appear to collaborate on any further publications. Overall, researchers consistently extended their co-authorships (1) by steadily enrolling beginning researchers (i.e., people who had never published before), and (2) by increasingly working with confirmed researchers with whom they already collaborated.


Co-authorship networks Research collaboration Research careers Cohort study Transversal study Longitudinal study Partnership ability 



This work was supported by the French National Agency for Research (ANR-11-BSH1-0013). We acknowledge the feedback of James Hartley and András Schubert on an earlier version of this article.


  1. Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., & Rauhe, T. (2006). Compact labeling scheme for ancestor queries. SIAM Journal on Computing, 35(6), 1295–1309. doi: 10.1137/s0097539703437211.CrossRefMathSciNetzbMATHGoogle Scholar
  2. Abiteboul, S., & Bonner, A. (1991). Objects and views. SIGMOD Record, 20(2), 238–247. doi: 10.1145/119995.115830.CrossRefGoogle Scholar
  3. Abiteboul, S., Gawlick, D., Gray, J., Haas, L., Halevy, A., Hellerstein, J., et al. (2005). The Lowell database research self-assessment. Communications of the ACM, 48(5), 111–118. doi: 10.1145/1060710.1060718.CrossRefGoogle Scholar
  4. Abiteboul, S., Hull, R., & Vianu, V. (2005). In memory of Seymour Ginsburg 1928–2004. SIGMOD Record, 34(1), 5–12. doi: 10.1145/1058150.1058152.CrossRefGoogle Scholar
  5. Abramo, G., D’Angelo, C. A., & Di Costa, F. (2009). Research collaboration and productivity: Is there correlation? Higher Education, 57(2), 155–171. doi: 10.1007/s10734-008-9139-z.CrossRefGoogle Scholar
  6. Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3–4), 590–614. doi: 10.1016/S0378-4371(02)00736-7.CrossRefMathSciNetzbMATHGoogle Scholar
  7. Beaver, D., & Rosen, R. (1978). Studies in scientific collaboration. Scientometrics, 1(1), 65–84. doi: 10.1007/BF02016840.CrossRefGoogle Scholar
  8. Braun, T., Glänzel, W., & Schubert, A. (2001). Publication and cooperation patterns of the authors of neuroscience journals. Scientometrics, 50(3), 499–510. doi: 10.1023/A:1012774206340.CrossRefGoogle Scholar
  9. Cabanac, G. (2012). Shaping the landscape of research in information systems from the perspective of editorial boards: A scientometric study of 77 leading journals. Journal of the American Society for Information Science and Technology, 63(5), 977–996. doi: 10.1002/asi.22609.CrossRefGoogle Scholar
  10. Cabanac, G. (2013). Experimenting with the partnership ability φ-index on a million computer scientists. Scientometrics, 96(1), 1–9. doi: 10.1007/s11192-012-0862-y.CrossRefGoogle Scholar
  11. Cavero, J. M., Vela, B., & Cáceres, P. (2014). Computer science research: More production, less productivity. Scientometrics, 98(3), 2103–2111. doi: 10.1007/s11192-013-1178-2.CrossRefGoogle Scholar
  12. Chen, J., & Konstan, J. A. (2010). Conference paper selectivity and impact. Communications of the ACM, 53(6), 79–83. doi: 10.1145/1743546.1743569.CrossRefGoogle Scholar
  13. Cheng, M. Y., Hen, K. W., Tan, H. P., & Fok, K. F. (2013). Patterns of co-authorship and research collaboration in Malaysia. Aslib Proceedings, 65(6), 659–674. doi: 10.1108/AP-12-2012-0094.CrossRefGoogle Scholar
  14. Cole, J. R., & Zuckerman, H. (1984). The productivity puzzle: Persistence and change in patterns of publication of men and women scientists. In M. W. Steinkempt & M. L. Maehr (Eds.), Advances in motivation and achievement (pp. 217–258). Greenwich, Conn.: JAI Press.Google Scholar
  15. Cole, S. (1979). Age and scientific performance. American Journal of Sociology, 84(4), 958–977.CrossRefGoogle Scholar
  16. Costas, R., van Leeuwen, T. N., & Bordons, M. (2010). A bibliometric classificatory approach for the study and assessment of research performance at the individual level: The effects of age on productivity and impact. Journal of the American Society for Information Science and Technology, 61(8), 1564–1581. doi: 10.1002/asi.21348.Google Scholar
  17. Cotta, C., & Merelo, J.-J. (2006). The complex network of EC authors. SIGEVOlution, 1(2), 2–9. doi: 10.1145/1147192.1147193.CrossRefGoogle Scholar
  18. Cronin, B., Shaw, D., & Barre, K. L. (2004). Visible, less visible, and invisible work: Patterns of collaboration in 20th century chemistry. Journal of the American Society for Information Science and Technology, 55(2), 160–168. doi: 10.1002/asi.10353.CrossRefGoogle Scholar
  19. Deng, H., King, I., Lyu, & M. R. (2008). Formal models for expert finding on DBLP bibliography data. In: ICDM’08: Proceedings of the 8th IEEE international conference on data mining (pp. 163–172). IEEE Computer Society. doi: 10.1109/ICDM.2008.29
  20. de Souza, C. G., & Azevedo Ferreira, M. L. (2013). Researchers profile, co-authorship pattern and knowledge organization in Information Science in Brazil. Scientometrics, 95(2), 673–687. doi: 10.1007/s11192-012-0882-7.CrossRefGoogle Scholar
  21. Elmacioglu, E., & Lee, D. (2005). On six degrees of separation in DBLP-DB and more. SIGMOD Record, 34(2), 33–40. doi: 10.1145/1083784.1083791.CrossRefGoogle Scholar
  22. Evans, T. S., Lambiotte, R., & Panzarasa, P. (2011). Community structure and patterns of scientific collaboration in business and management. Scientometrics, 89(1), 381–396. doi: 10.1007/s11192-011-0439-1.CrossRefGoogle Scholar
  23. Frenken, K., Hölzl, W., & de Vor, F. (2005). The citation impact of research collaborations: The case of European biotechnology and applied microbiology (1988–2002). Journal of Engineering and Technology Management, 22(1–2), 9–30. doi: 10.1016/j.jengtecman.2004.11.002.CrossRefGoogle Scholar
  24. Freyne, J., Coyle, L., Smyth, B., & Cunningham, P. (2010). Relative status of journal and conference publications in Computer Science. Communications of the ACM, 53(11), 124–132. doi: 10.1145/1839676.1839701.CrossRefGoogle Scholar
  25. Garfield, E. (1996). What is the primordial reference for the phrase ‘Publish or Perish’? The Scientist, 10(12), 11.Google Scholar
  26. Genuth, J., Chompalov, I., & Shrum, W. (2000). How experiments begin: The formation of scientific collaborations. Minerva, 38(3), 311–348. doi: 10.1023/A:1026573717027.CrossRefGoogle Scholar
  27. Gingras, Y., Larivière, V., Macaluso, B., & Robitaille, J.-P. (2008). The effects of aging on researchers publication and citation patterns. PLoS ONE, 3(12), e4048. doi: 10.1371/journal.pone.0004048.CrossRefGoogle Scholar
  28. Glänzel, W., & Schubert, A. (2005). Analysing scientific networks through co-authorship. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 257–276). Berlin: Springer. doi: 10.1007/1-4020-2755-9_12 CrossRefGoogle Scholar
  29. Goodwin, T. H., & Sauer, R. D. (1995). Life cycle productivity in academic research: Evidence from cumulative publication histories of academic economists. Southern Economic Journal, 61(3), 728–743. doi: 10.2307/1060993.CrossRefGoogle Scholar
  30. Hall, B. H., Mairesse, J., & Turner, L. (2007). Identifying age, cohort, and period effects in scientific research productivity: Discussion and illustration using simulated and actual data on French physicists. Economics of Innovation and New Technology, 16(2), 159–177. doi: 10.1080/10438590600983010.CrossRefGoogle Scholar
  31. Horlings, E., & Gurney, T. (2013). Search strategies along the academic lifecycle. Scientometrics, 94(3), 1137–1160. doi: 10.1007/s11192-012-0789-3.CrossRefGoogle Scholar
  32. Huang, J., Zhuang, Z., Li, J., Giles, C. L. (2008). Collaboration over time: Characterizing and modeling network evolution. In: WSDM’08: Proceedings of the international conference on web search and web data mining (pp. 107–116). New York, NY, USA: ACM. doi: 10.1145/1341531.1341548.
  33. Ioannidis, Y., Maier, D., Abiteboul, S., Buneman, P., Davidson, S., Fox, E., Weikum, G. (2005). Digital library information-technology infrastructures. International Journal on Digital Libraries, 5(4), 266-–274. doi:  10.1007/s00799-004-0094-8
  34. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18. doi: 10.1016/S0048-7333(96)00917-1.CrossRefGoogle Scholar
  35. Kossinets, G., & Watts, D. J. (2009). Origins of homophily in an evolving social network. American Journal of Sociology, 115(2), 405–450. doi: 10.1086/599247.CrossRefGoogle Scholar
  36. Kyvik, S., & Olsen, T. B. (2008). Does the aging of tenured academic staff affect the research performance of universities? Scientometrics, 76(3), 439–455. doi: 10.1007/s11192-007-1767-z.CrossRefGoogle Scholar
  37. Landry, R., & Amara, N. (1998). The impact of transaction costs on the institutional structuration of collaborative academic research. Research Policy, 27(9), 901–913. doi: 10.1016/S0048-7333(98)00098-5.CrossRefGoogle Scholar
  38. Lee D., Goh K.-I., Kahng B., Kim D. (2010) Complete trails of coauthorship network evolution. Physical Review E 82(2):026112–1-026112-9. doi: 10.1103/PhysRevE.82.026112.
  39. Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673–702. doi: 10.1177/0306312705052359.CrossRefGoogle Scholar
  40. Levin, S. G., & Stephan, P. E. (1989). Age and research productivity of academic scientists. Research in Higher Education, 30(5), 531–549. doi: 10.1007/BF00992202.CrossRefGoogle Scholar
  41. Ley, M. (2002). The DBLP computer science bibliography: Evolution, research issues, perspectives. In: Laender, A. H. F., Oliveira, A. L. (eds), SPIRE’02 : Proceedings of the 9th international conference on String Processing and Information Retrieval (Vol. 2476, pp. 1–10). Springer, Berlin. doi: 10.1007/3-540-45735-6_1.
  42. Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–324.Google Scholar
  43. Over, R. (1982). Does research productivity decline with age? Higher Education, 11(5), 511–520. doi: 10.1007/BF00194416.CrossRefGoogle Scholar
  44. Özsu, M.T., Valduriez, P., Abiteboul, S., Kemme, B., Jiménez-Péris, R., Ooi, B.C. (2011). Distributed data management in 2020? ICDE’11 Proceedings of the 27th IEEE International Conference on Data Engineering. doi: 10.1109/icde.2011.5767962.
  45. Pitoura, E., Abiteboul, S., Pfoser, D., Samaras, G., & Vazirgiannis, M. (2003). DBGlobe: A service-oriented P2P system for global computing. SIGMOD Record, 32(3), 77–82. doi: 10.1145/945721.945737.CrossRefGoogle Scholar
  46. Price, D. d. S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306. doi: 10.1002/asi.4630270505.
  47. Price, D. d. S, & Gürsey, S. (1975). Studies in scientometrics I: Transience and continuance in scientific authorship. Ciência da Informação, 4(1), 27–40.Google Scholar
  48. Reitz, F., Hoffmann, O. (2010). An analysis of the evolving coverage of computer science sub-fields in the DBLP digital library. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.), ECDL’10: Proceedings of the 14th European conference on research and advanced technology for digital libraries (Vol. 6273, pp. 216–227). Springer, Berlin. doi: 10.1007/978-3-642-15464-5_23.
  49. Reitz, F., Hoffmann, O. (2013). Learning from the past: An analysis of person name corrections in the DBLP collection and social network properties of affected entities. In: Özyer T, Rokne J, Wagner G, Reuser A H (eds) The Influence of Technology on Social Network Analysis and Mining (Vol. 6, pp. 427–453). Springer, Berlin. doi:  10.1007/978-3-7091-1346-2_19
  50. Reuther, P., Walter, B., Ley, M., Weber, A., Klink, S. (2006). Managing the quality of person names in DBLP. In: Gonzalo, J., Thanos, C., Verdejo, M. F., Carrasco, R. C. (eds.), ECDL’06: Proceedings of the 10th European conference on research and advanced technology for digital libraries (Vol. 4172, pp. 508–511). Springer, Berlin. doi: 10.1007/11863878_55.
  51. Schubert, A. (2012). A Hirsch-type index of co-author partnership ability. Scientometrics, 91(1), 303–308. doi: 10.1007/s11192-011-0559-7.CrossRefGoogle Scholar
  52. Schubert, A., & Glänzel, W. (1991). Publication dynamics: Models and indicators. Scientometrics, 20(1), 317–331. doi: 10.1007/BF02018161.CrossRefGoogle Scholar
  53. Snodgrass, R. T., Abiteboul, S., Cluet, S., Franklin, M. J., Lohman, G. M., Lomet, D. B., et al. (1999). Reminiscences on influential papers. SIGMOD Record, 28(1), 110–114.Google Scholar
  54. Solomon, J. (2009). Programmers, professors, and parasites: Credit and co-authorship in Computer Science. Science and Engineering Ethics, 15(4), 467–489. doi: 10.1007/s11948-009-9119-4.CrossRefGoogle Scholar
  55. Stroebe, W. (2010). The graying of academia: Will it reduce scientific productivity? American Psychologist, 65(7), 660–673. doi: 10.1037/a0021086.CrossRefGoogle Scholar
  56. Stvilia, B., Hinnant, C. C., Schindler, K., Worrall, A., Burnett, G., Burnett, K., Kazmer, M. M., Marty, P. F. (2011). Composition of scientific teams and publication productivity at a national science lab. Journal of the American Society for Information Science and Technology, 62(2), 270-283. doi: 10.1002/asi.21464.
  57. Sugimoto, C. R., & Cronin, B. (2012). Biobibliometric profiling: An examination of multifaceted approaches to scholarship. Journal of the American Society for Information Science and Technology, 63(3), 450–468. doi: 10.1002/asi.21695.CrossRefGoogle Scholar
  58. Velden, T., Haque, A.-U., & Lagoze, C. (2010). A new approach to analyzing patterns of collaboration in co-authorship networks: Mesoscopic analysis and interpretation. Scientometrics, 85(1), 219–242. doi: 10.1007/s11192-010-0224-6.CrossRefGoogle Scholar
  59. Wallace, M. L., Larivière, V., & Gingras, Y. (2012). A small world of citations? The influence of collaboration networks on citation practices. PLoS ONE, 7(3), e33339. doi: 10.1371/journal.pone.0033339.CrossRefGoogle Scholar
  60. Zhang, L., & Glänzel, W. (2012). Where demographics meets scientometrics: Towards a dynamic career analysis. Scientometrics, 91(2), 617–630. doi: 10.1007/s11192-011-0590-8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Guillaume Cabanac
    • 1
  • Gilles Hubert
    • 1
  • Béatrice Milard
    • 2
  1. 1.Computer Science Department, IRIT UMR 5505 CNRSUniversity of ToulouseToulouseFrance
  2. 2.Department of Sociology, LISST UMR 5193 CNRSUniversity of ToulouseToulouseFrance

Personalised recommendations